Solveeit Logo

Question

Mathematics Question on Straight lines

The pair of straight lines x23y2=0{{x}^{2}}-3{{y}^{2}}=0 and the line x=1x=1 form a triangle which is

A

right angled

B

isosceles

C

scalene

D

equilateral

Answer

equilateral

Explanation

Solution

Given, lines are x23y2=0{{x}^{2}}-3{{y}^{2}}=0
and x=1x=1
\Rightarrow (x3y)=0,(x+3y)=0(x-\sqrt{3}y)=0,\,(x+\sqrt{3}\,y)=0
and x=1x=1
Here, AB=(01)2+(013)2AB=\sqrt{{{(0-1)}^{2}}+{{\left( 0-\frac{1}{\sqrt{3}} \right)}^{2}}}
=1+13=23=\sqrt{1+\frac{1}{3}}=\frac{2}{\sqrt{3}}
BC=(11)2+(13+13)2BC=\sqrt{{{(1-1)}^{2}}+{{\left( \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}} \right)}^{2}}}
=(23)2=23=\sqrt{{{\left( \frac{2}{\sqrt{3}} \right)}^{2}}}=\frac{2}{\sqrt{3}}
CA=(10)2+(130)2CA=\sqrt{{{(1-0)}^{2}}+{{\left( -\frac{1}{\sqrt{3}}-0 \right)}^{2}}}
=1+13=23=\sqrt{1+\frac{1}{3}}=\frac{2}{\sqrt{3}}
Hence, all the three sides of ΔABC\Delta \,ABC are equal. Therefore, the triangle is equilateral.