Solveeit Logo

Question

Question: The pair of lines joining origin to the intersection of the curve \(\frac{x^{2}}{a^{2}}\) + \(\frac{...

The pair of lines joining origin to the intersection of the curve x2a2\frac{x^{2}}{a^{2}} + y2b2\frac{y^{2}}{b^{2}} = 1 by the line lx + my + n = 0 are coincident if-

A

a2l2 + b2 m2 = n2

B

a2l2+b2m2=1n2\frac{a^{2}}{\mathcal{l}^{2}} + \frac{b^{2}}{m^{2}} = \frac{1}{n^{2}}

C

l2a2+m2b2\frac{\mathcal{l}^{2}}{a^{2}} + \frac{m^{2}}{b^{2}} = n2

D

None of these

Answer

a2l2 + b2 m2 = n2

Explanation

Solution

lx + my + n = 0 ̃ lx+myn\frac{\mathcal{l}x + my}{- n} = 1

x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 = lx+myn\frac{\mathcal{l}x + my}{- n}

(n2a2l2)\left( \frac{n^{2}}{a^{2}} - \mathcal{l}^{2} \right) x2 + (n2b2m2)\left( \frac{n^{2}}{b^{2}} - m^{2} \right)y2 – 2mxy = 0

This represent a pair of coincident lines if

l2 m2(n2a2l2)\left( \frac{n^{2}}{a^{2}} - \mathcal{l}^{2} \right) (n2b2m2)\left( \frac{n^{2}}{b^{2}} - m^{2} \right) = 0

n4a2b2\frac{n^{4}}{a^{2}b^{2}} = n2m2a2\frac{n^{2}m^{2}}{a^{2}} + n2l2b2\frac{n^{2}\mathcal{l}^{2}}{b^{2}} ̃ a2l2 + b2m2 = n2