Solveeit Logo

Question

Question: The packing efficiency of the face centred cubic (fcc), body-centred cubic (bcc) and simple primitiv...

The packing efficiency of the face centred cubic (fcc), body-centred cubic (bcc) and simple primitive cubic (pc) lattices follows the order:
A. fcc > bcc > pc
B. bcc > fcc > pc
C. pc > bcc > fcc
D. bcc > pc > fcc

Explanation

Solution

Hint: We know that each cube has 8 corners, 12 edges, 6 faces, 12 face diagonals and 8 body diagonals. Keeping this information in mind we need to proceed for the comparison.

Step by step answer:
The percentage efficiency of a simple cubic unit cell is:
Suppose,
Length of the unit cell = a\text{= a}
Radius of the sphere (atom) = r\text{= r}
Total volume of the unit cell a3(2r)3= 8r3\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \text{2r} \right)}^{\text{3}}}\text{= 8}{{\text{r}}^{\text{3}}}
Number of atoms per unit cell = 8 !!×!! 18 = 1\text{= 8 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{1}}{\text{8}}\text{ = 1}
Volume of the atom \text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}$$$$\text{= }\dfrac{\text{4}}{\text{3}}\text{ }\\!\\!\pi\\!\\!\text{ }{{\text{r}}^{\text{3}}}
\therefore packing fraction Occupied volume Total volume \text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }
(4/3) !!π!! r38r3= 0.5233\text{= }\dfrac{\left( \text{4/3} \right)\text{ }\\!\\!\pi\\!\\!\text{ }{{\text{r}}^{\text{3}}}}{\text{8}{{\text{r}}^{\text{3}}}}\text{= 0}\text{.5233}
Thus, the percentage of occupied volume or packing efficiency = 0.5233 !!×!! 100 = 52.33 !!\text{= 0}\text{.5233 }\\!\\!\times\\!\\!\text{ 100 = 52}\text{.33 }\\!\\!%\\!\\!\text{ }
The percentage efficiency of a body-centred unit cell is:
Suppose,
Length of the unit cell = a\text{= a}
Radius of the sphere (atom) = r\text{= r}
In this unit cell,
a = 43 !!×!! r\text{a = }\dfrac{\text{4}}{\sqrt{\text{3}}}\text{ }\\!\\!\times\\!\\!\text{ r}
Total volume of the unit cell a3(43)3r36433 r3\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \dfrac{\text{4}}{\sqrt{\text{3}}} \right)}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{= }\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}\text{ }{{\text{r}}^{\text{3}}}
Number of atoms per unit cell = 2\text{= 2}
Volume of two atoms = 2 !!×!! 43 !!π!! r3\text{= 2 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\\!\\!\pi\\!\\!\text{ }{{\text{r}}^{\text{3}}}
Therefore, packing fraction (3D) Occupied volume Total volume \text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }
=!!×!! 43 !!π!! r36433r3=0.68\text{=}\dfrac{\text{2 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\\!\\!\pi\\!\\!\text{ }{{\text{r}}^{\text{3}}}}{\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.68}

Thus, the percentage of occupied volume or packing efficiency = 68 !!\text{= 68 }\\!\\!%\\!\\!\text{ }
The percentage efficiency of a face-centred cubic unit cell:
Suppose,
Length of the unit cell = a\text{= a}
Radius of the sphere (atom) = r\text{= r}
In this unit cell,
a=22×r\text{a=2}\sqrt{\text{2}}\times \text{r}
Total volume of the unit cell =a3=(22)3r3=162r3\text{=}{{\text{a}}^{\text{3}}}\text{=(2}\sqrt{\text{2}}{{\text{)}}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{=16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}
Number of atoms per unit cell = 4\text{= 4}
Volume of four atoms = 4 !!×!! 43 !!π!! r3\text{= 4 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\\!\\!\pi\\!\\!\text{ }{{\text{r}}^{\text{3}}}
(This is the occupied volume)
Therefore, packing fraction (3D) =Occupied volume  Total volume\text{=}\dfrac{\text{Occupied volume }}{\text{ Total volume}}
=!!×!! 43 !!π!! r3162r3=0.7401\text{=}\dfrac{\text{4 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\\!\\!\pi\\!\\!\text{ }{{\text{r}}^{\text{3}}}}{\text{16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.7401}
Thus, the percentage of occupied volume or packing efficiency = 74.01 !!\text{= 74}\text{.01 }\\!\\!%\\!\\!\text{ }
Hence we can see that the packing efficiency goes in to order:
fcc > bcc > pc
So Option A is the correct answer.

Note:


Atomic radius of simple cubic unit cell is: r = a2\text{r = }\dfrac{\text{a}}{\text{2}}


Atomic radius of body-centred unit cell is: r = 34 a\text{r = }\dfrac{\sqrt{\text{3}}}{\text{4 a}}


Atomic radius of face-centred unit cell is: r = 122a\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}