Solveeit Logo

Question

Question: The P-V diagram of path followed by one mole of perfect gas in a cylindrical container is shown in f...

The P-V diagram of path followed by one mole of perfect gas in a cylindrical container is shown in figure, the work done when the gas is taken from state A to state B is

A

2P2V1 [1V2V1]\left[ 1 - \frac { \sqrt { \mathrm { V } _ { 2 } } } { \sqrt { \mathrm { V } _ { 1 } } } \right]

B

2P1V1 [1V1V2]\left[ 1 - \frac { \sqrt { \mathrm { V } _ { 1 } } } { \sqrt { \mathrm { V } _ { 2 } } } \right]

C

2P1V2[V1 V21]\left[ \frac { \sqrt { \mathrm { V } _ { 1 } } } { \sqrt { \mathrm {~V} _ { 2 } } } - 1 \right]

D

2P2V2 [1V1V2]\left[ 1 - \frac { \sqrt { \mathrm { V } _ { 1 } } } { \sqrt { \mathrm { V } _ { 2 } } } \right]

Answer

2P1V1 [1V1V2]\left[ 1 - \frac { \sqrt { \mathrm { V } _ { 1 } } } { \sqrt { \mathrm { V } _ { 2 } } } \right]

Explanation

Solution

: for path A to B PV3/2=P V ^ { 3 / 2 } =constant = A

The work done

W=V1V2PdV=V1V2AV3/2dV=A[V1/21/2]V1V2W = \int _ { V _ { 1 } } ^ { V _ { 2 } } P d V = \int _ { V _ { 1 } } ^ { V _ { 2 } } \frac { A } { V ^ { 3 / 2 } } d V = A \left[ \frac { V ^ { - 1 / 2 } } { - 1 / 2 } \right] _ { V _ { 1 } } ^ { V _ { 2 } }

=2A[V1/2ψy1γ2=2A[1V21V1]= - 2 A \left[ V ^ { - 1 / 2 } \psi _ { y _ { 1 } } ^ { \gamma _ { 2 } } = - 2 A \left[ \frac { 1 } { \sqrt { V _ { 2 } } } - \frac { 1 } { \sqrt { V _ { 1 } } } \right] \right.

=2A[1V11V2]=2P1V13/2[V2V1V1V2]= 2 A \left[ \frac { 1 } { \sqrt { V _ { 1 } } } - \frac { 1 } { \sqrt { V _ { 2 } } } \right] = 2 P _ { 1 } V _ { 1 } ^ { 3 / 2 } \left[ \frac { \sqrt { V _ { 2 } } - \sqrt { V _ { 1 } } } { \sqrt { V _ { 1 } V _ { 2 } } } \right]

=2P1V1[1V1V2][P1V13/2=costant]= 2 P _ { 1 } V _ { 1 } \left[ 1 - \frac { \sqrt { V _ { 1 } } } { \sqrt { V _ { 2 } } } \right] \quad \left[ \because P _ { 1 } V _ { 1 } ^ { 3 / 2 } = \cos \tan t \right]