Solveeit Logo

Question

Question: The orthogonal trajectories of the family of curve y = cx<sup>k</sup> are given by...

The orthogonal trajectories of the family of curve y = cxk are given by

A

x2 + cy2 = constant

B

x2 + ky2 = constant

C

kx2 + y2 = constant

D

x2− ky2 = constant

Answer

x2 + ky2 = constant

Explanation

Solution

Differentiating the given relation we have,

dydx\frac{dy}{dx} = ckxk−1 ⇒ c = 1k\frac{1}{k} x1−k dydx\frac{dy}{dx}.

Putting this value in the given equation we have

y = 1k\frac{1}{k}x1−k dydx\frac{dy}{dx}xk = 1k\frac{1}{k}x dydx\frac{dy}{dx}.

Replacing dydx\frac{dy}{dx} by – dxdy\frac{dx}{dy}, we get

y = − 1k\frac{1}{k}x dxdy\frac{dx}{dy} ⇒ ky dy + x dx = 0 ⇒ ky2 + x2 = constant