Solveeit Logo

Question

Mathematics Question on Determinants

The ordered pair (a, b), for which the system of linear equations
3x - 2y + z = b
5x - 8y + 9z = 3
2x + y + az = -1
has no solution, is :

A

(3,13)(3,\frac{1}{3})

B

(3,13)(-3,\frac{1}{3})

C

(3,13)(-3,-\frac{1}{3})

D

(3,13)(3,-\frac{1}{3})

Answer

(3,13)(-3,-\frac{1}{3})

Explanation

Solution

The correct answer is (C) : (3,13)(-3,-\frac{1}{3})
321 589 21α=014α42=0α=3\begin{vmatrix} 3 & -2 & 1 \\\ 5 & -8 & 9 \\\ 2 & 1 & \alpha \end{vmatrix} = 0 \Rightarrow -14\alpha - 42 = 0 \Rightarrow \alpha = -3
Now 3(equation (1)) – (equation (2)) – 2(equation (3)) is
3(3x – 2y + z – b) – (5x – 8y + 9z – 3) – 2(2x + y + az + 1) = 0
⇒ –3b + 3 – 2 = 0
b=13⇒b=\frac{1}{3}
So for no solution
a=3a = –3 and b13b≠\frac{1}{3}