Question
Question: The order of the nilpotent matrix \(A=\left[ \begin{matrix} 1 & 1 & 3 \\\ 5 & 2 & 6 \\\ ...
The order of the nilpotent matrix A=1 5 −2 12−136−3 is
[a] 2
[b] 3
[c] all multiples of 3
[d] Given matrix is not nilpotent
Solution
- Hint: Check if the matrix is not nilpotent by finding the determinant of the given matrix. If the determinant is non-zero, then the matrix is not nilpotent. If the determinant is zero, find A2,A3,⋯ successively and hence find the smallest value of k such that Ak=O and hence find the order of the nilpotent matrix.
Complete step-by-step solution -
Nilpotent matrix: A square matrix A is said to be a nilpotent matrix if there exists k∈N, such that Ak=O where O is a null matrix of the same dimensions as of A. The smallest value of k such that Ak=O is called the order of the nilpotent matrix. Hence if k is the order of the nilpotent matrix, then An=O∀n≥k and An=O∀n\det \left( {{A}^{k}} \right)=0Since\det \left( {{A}^{k}} \right)={{\left( \det A \right)}^{k}},weget\det \left( A \right)=0Henceamatrixcanbenilpotentif\det \left( A \right)=0andif\det \left( A \right)\ne 0thenthematrixcannotbenilpotent.Inthegivenmatrix,wehaveA=\left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]Hence\det \left( A \right)=1\left( -6+6 \right)-1\left( -15+12 \right)+3\left( -5+4 \right)=0+3-3=0Sincedet(A)=0,thematrixcanbeanilpotentmatrix.Now,wehaveA=\left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]Hence{{A}^{1}}\ne O.{{A}^{2}}=\left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3 \\
\end{matrix} \right]Since{{A}^{2}}\ne Owehavek\ne 0Now,wehave{{A}^{3}}={{A}^{2}}AHence,wehave{{A}^{3}}=\left[ \begin{matrix}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{matrix} \right]=OSince{{A}^{3}}=O$, we have the order of nilpotency = 3.
Hence the order of the given nilpotent matrix is 3, and hence option [b] is correct.
Note: [1] A nilpotent matrix has only 0 as its eigenvalue, and hence characteristic polynomial equation is xn=0. The two statements are equivalent, i.e. A matrix is nilpotent if xn=0 is the characteristic polynomial equation of the matrix and if the matrix is nilpotent, then xn=0 is the characteristic polynomial equation.
The characteristic polynomial equation of a matrix A is the polynomial equation det(A−xI)=0.
Hence we can prove that A=1 5 −2 12−136−3 is a nilpotent matrix by verifying det(A−xI)=0 is the polynomial equation x3=0