Solveeit Logo

Question

Question: The order of the nilpotent matrix \(A=\left[ \begin{matrix} 1 & 1 & 3 \\\ 5 & 2 & 6 \\\ ...

The order of the nilpotent matrix A=[113 526 213 ]A=\left[ \begin{matrix} 1 & 1 & 3 \\\ 5 & 2 & 6 \\\ -2 & -1 & -3 \\\ \end{matrix} \right] is
[a] 2
[b] 3
[c] all multiples of 3
[d] Given matrix is not nilpotent

Explanation

Solution

- Hint: Check if the matrix is not nilpotent by finding the determinant of the given matrix. If the determinant is non-zero, then the matrix is not nilpotent. If the determinant is zero, find A2,A3,{{A}^{2}},{{A}^{3}},\cdots successively and hence find the smallest value of k such that Ak=O{{A}^{k}}=O and hence find the order of the nilpotent matrix.

Complete step-by-step solution -

Nilpotent matrix: A square matrix A is said to be a nilpotent matrix if there exists kNk\in \mathbb{N}, such that Ak=O{{A}^{k}}=O where O is a null matrix of the same dimensions as of A. The smallest value of k such that Ak=O{{A}^{k}}=O is called the order of the nilpotent matrix. Hence if k is the order of the nilpotent matrix, then An=Onk{{A}^{n}}=O\forall n\ge k and AnOn{{A}^{n}}\ne O\forall n\det \left( {{A}^{k}} \right)=0Since Since\det \left( {{A}^{k}} \right)={{\left( \det A \right)}^{k}},weget, we get \det \left( A \right)=0Henceamatrixcanbenilpotentif Hence a matrix can be nilpotent if\det \left( A \right)=0andifand if\det \left( A \right)\ne 0thenthematrixcannotbenilpotent.Inthegivenmatrix,wehavethen the matrix cannot be nilpotent. In the given matrix, we have A=\left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]Hence Hence\det \left( A \right)=1\left( -6+6 \right)-1\left( -15+12 \right)+3\left( -5+4 \right)=0+3-3=0Sincedet(A)=0,thematrixcanbeanilpotentmatrix.Now,wehave Since det(A) = 0, the matrix can be a nilpotent matrix. Now, we have A=\left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]Hence Hence{{A}^{1}}\ne O.. {{A}^{2}}=\left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3 \\
\end{matrix} \right]Since Since{{A}^{2}}\ne Owehavewe havek\ne 0Now,wehave Now, we have{{A}^{3}}={{A}^{2}}AHence,wehave Hence, we have {{A}^{3}}=\left[ \begin{matrix}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{matrix} \right]=OSince Since{{A}^{3}}=O$, we have the order of nilpotency = 3.
Hence the order of the given nilpotent matrix is 3, and hence option [b] is correct.

Note: [1] A nilpotent matrix has only 0 as its eigenvalue, and hence characteristic polynomial equation is xn=0{{x}^{n}}=0. The two statements are equivalent, i.e. A matrix is nilpotent if xn=0{{x}^{n}}=0 is the characteristic polynomial equation of the matrix and if the matrix is nilpotent, then xn=0{{x}^{n}}=0 is the characteristic polynomial equation.
The characteristic polynomial equation of a matrix A is the polynomial equation det(AxI)=0\det \left( A-xI \right)=0.
Hence we can prove that A=[113 526 213 ]A=\left[ \begin{matrix} 1 & 1 & 3 \\\ 5 & 2 & 6 \\\ -2 & -1 & -3 \\\ \end{matrix} \right] is a nilpotent matrix by verifying det(AxI)=0\det \left( A-xI \right)=0 is the polynomial equation x3=0{{x}^{3}}=0