Solveeit Logo

Question

Question: The order of the differential equation, whose general solution is \(y = c_{1}e^{x} + c_{2}e^{2x} + c...

The order of the differential equation, whose general solution is y=c1ex+c2e2x+c3e3x+c4ex+c5y = c_{1}e^{x} + c_{2}e^{2x} + c_{3}e^{3x} + c_{4}e^{x + c_{5}}, where c1,c2,c3,c4,c5c_{1},c_{2},c_{3},c_{4},c_{5} are arbitrary constants is

A

5

B

4

C

3

D

None of these

Answer

3

Explanation

Solution

y=c1ex+c2e2x+c3e3x+c4ex.ec5\mathbf{y =}\mathbf{c}_{\mathbf{1}}\mathbf{e}^{\mathbf{x}}\mathbf{+}\mathbf{c}_{\mathbf{2}}\mathbf{e}^{\mathbf{2x}}\mathbf{+}\mathbf{c}_{\mathbf{3}}\mathbf{e}^{\mathbf{3x}}\mathbf{+}\mathbf{c}_{\mathbf{4}}\mathbf{e}^{\mathbf{x}}\mathbf{.}\mathbf{e}^{\mathbf{c}_{\mathbf{5}}}

=(c1+c4.ec5)ex+c2e2x+c3e3x=c1ex+c2e2x+c3e3x\mathbf{= (}\mathbf{c}_{\mathbf{1}}\mathbf{+}\mathbf{c}_{\mathbf{4}}\mathbf{.}\mathbf{e}^{\mathbf{c}_{\mathbf{5}}}\mathbf{)}\mathbf{e}^{\mathbf{x}}\mathbf{+}\mathbf{c}_{\mathbf{2}}\mathbf{e}^{\mathbf{2x}}\mathbf{+}\mathbf{c}_{\mathbf{3}}\mathbf{e}^{\mathbf{3x}}\mathbf{=}\mathbf{c}_{\mathbf{1}}^{\mathbf{'}}\mathbf{e}^{\mathbf{x}}\mathbf{+}\mathbf{c}_{\mathbf{2}}\mathbf{e}^{\mathbf{2x}}\mathbf{+}\mathbf{c}_{\mathbf{3}}\mathbf{e}^{\mathbf{3x}}

where c1=c1+c4.ec5c_{1}^{'} = c_{1} + c_{4}.e^{c_{5}}. So there are 3 arbitrary constant associated with different terms. Hence the order of the differential equation formed, will be 3.