Solveeit Logo

Question

Mathematics Question on Differential equations

The order of the differential equation (d3ydx3)2+(d2ydx)2+(dydx)5=0\left(\frac{d^{3}\, y }{dx^{3}}\right)^{2} + \left(\frac{d^{2}\,y}{dx}\right)^{2} + \left(\frac{dy}{dx}\right)^{5} = 0 is

A

3

B

4

C

1

D

5

Answer

3

Explanation

Solution

We have,
(d3ydx3)2+(d2ydx2)2+(dydx)5=0\left(\frac{d^{3}\, y}{d x^{3}}\right)^{2}+\left(\frac{d^{2} \,y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{5}=0
Since, the highest order derivative is d3ydx3\frac{d^{3} y}{d x^{3}}
\therefore Order of the given differential equation is 33