Solveeit Logo

Question

Question: The order of reaction A → Product can be given by the expression(s) [where r = rate of reaction, $[A...

The order of reaction A → Product can be given by the expression(s) [where r = rate of reaction, [A]1[A]_1 and [A]2[A]_2 are concentration at t1t_1 and t2t_2 respectively]

A

lnr2lnr1ln[A]2ln[A]1\frac{ln\,r_2 - ln\,r_1}{ln\,[A]_2 - ln\,[A]_1}

B

ln[A]2ln[A]1ln[t1/2]2ln[t1/2]1\frac{ln\,[A]_2 - ln\,[A]_1}{ln\,[t_{1/2}]_2 - ln\,[t_{1/2}]_1}

C

ln(d[A]kdt)ln[A]\frac{ln(\frac{-d[A]}{kdt})}{ln[A]}

D

ln(rk)ln[A]\frac{ln(\frac{r}{k})}{ln[A]}

Answer

A, C, D

Explanation

Solution

The rate law for a reaction A → Product is r=k[A]nr = k[A]^n.

  1. Option A: Taking natural log of the rate law, lnr=lnk+nln[A]ln\,r = ln\,k + n\,ln\,[A]. For two data points (r1,[A]1)(r_1, [A]_1) and (r2,[A]2)(r_2, [A]_2), subtracting the equations lnr2lnr1=n(ln[A]2ln[A]1)ln\,r_2 - ln\,r_1 = n(ln\,[A]_2 - ln\,[A]_1) yields n=lnr2lnr1ln[A]2ln[A]1n = \frac{ln\,r_2 - ln\,r_1}{ln\,[A]_2 - ln\,[A]_1}.
  2. Option B: The half-life for n1n \neq 1 is t1/2[A]01nt_{1/2} \propto [A]_0^{1-n}. Taking natural log, lnt1/2=C+(1n)ln[A]0ln\,t_{1/2} = C' + (1-n)ln\,[A]_0. For two data points, ln[t1/2]2ln[t1/2]1=(1n)(ln[A]2ln[A]1)ln\,[t_{1/2}]_2 - ln\,[t_{1/2}]_1 = (1-n)(ln\,[A]_2 - ln\,[A]_1). This leads to ln[A]2ln[A]1ln[t1/2]2ln[t1/2]1=11n\frac{ln\,[A]_2 - ln\,[A]_1}{ln\,[t_{1/2}]_2 - ln\,[t_{1/2}]_1} = \frac{1}{1-n}, not 'n'.
  3. Option C and D: From the rate law r=k[A]nr = k[A]^n, divide by kk to get rk=[A]n\frac{r}{k} = [A]^n. Taking natural log, ln(rk)=nln[A]ln(\frac{r}{k}) = n\,ln[A]. Thus, n=ln(rk)ln[A]n = \frac{ln(\frac{r}{k})}{ln[A]}. Option C uses r=d[A]/dtr = -d[A]/dt, so d[A]kdt=rk\frac{-d[A]}{kdt} = \frac{r}{k}, making C equivalent to D.