Solveeit Logo

Question

Question: The orbital angular momentum for an electron revolving in an orbit is given by\(\sqrt{\mathcal{l}\le...

The orbital angular momentum for an electron revolving in an orbit is given byl(l+1)h2π\sqrt{\mathcal{l}\left( \mathcal{l} + 1 \right)}\frac{h}{2\pi}

This momentum for an s-electron will be given by

A

+12h2π+ \frac{1}{2}\frac{h}{2\pi}.

B

Zero

C

h2π\frac{h}{2\pi}

D

2h2π\sqrt{2}\frac{h}{2\pi}

Answer

Zero

Explanation

Solution

The value of l\mathcal{l} (azimuthal quantum number) for s -electron is equal to zero.

Orbital angular momentum =l(l+1).h2π= \sqrt{\mathcal{l}\left( \mathcal{l} + 1 \right)}.\frac{h}{2\pi}

Substituting the value of l for s-electron 0(0+1).h2π=0\sqrt{0(0 + 1)}.\frac{h}{2\pi} = 0