Solveeit Logo

Question

Question: The options with the values of \(\alpha \) and \(L\) that satisfies the following equation is/are ...

The options with the values of α\alpha and LL that satisfies the following equation is/are
04πet(sin6αt+cos4αt)dt0πet(sin6αt+cos4αt)dt=L,\dfrac{\int\limits_{0}^{4\pi }{{{e}^{t}}\left( {{\sin }^{6}}\alpha t+{{\cos }^{4}}\alpha t \right)dt}}{\int\limits_{0}^{\pi }{{{e}^{t}}\left( {{\sin }^{6}}\alpha t+{{\cos }^{4}}\alpha t \right)dt}}=L, is/are
A. α=2,L=e4π1eπ1\alpha =2,L=\dfrac{{{e}^{4\pi }}-1}{{{e}^{\pi }}-1}
B. α=2,L=e4π+1eπ+1\alpha =2,L=\dfrac{{{e}^{4\pi }}+1}{{{e}^{\pi }}+1}
C. α=4,L=e4π1eπ1\alpha =4,L=\dfrac{{{e}^{4\pi }}-1}{{{e}^{\pi }}-1}
D. α=4,L=e4π+1eπ+1\alpha =4,L=\dfrac{{{e}^{4\pi }}+1}{{{e}^{\pi }}+1}

Explanation

Solution

We solve this question by assuming the value of α\alpha as 2 and 4 and solving for L.L. We use the basic integration formula and concepts to simplify the expression. We split the numerator to intervals of π\pi and simplify this function in such a way that the numerator can be simplified to obtain the solution.

Complete step by step solution:
In order to solve this question, let us consider the numerator of the given function L=04πet(sin6αt+cos4αt)dt0πet(sin6αt+cos4αt)dt.(1)L=\dfrac{\int\limits_{0}^{4\pi }{{{e}^{t}}\left( {{\sin }^{6}}\alpha t+{{\cos }^{4}}\alpha t \right)dt}}{\int\limits_{0}^{\pi }{{{e}^{t}}\left( {{\sin }^{6}}\alpha t+{{\cos }^{4}}\alpha t \right)dt}}.\ldots \left( 1 \right)
Let us consider this numerator to be I.
I=04πet(sin6αt+cos4αt)dt\Rightarrow I=\int\limits_{0}^{4\pi }{{{e}^{t}}\left( {{\sin }^{6}}\alpha t+{{\cos }^{4}}\alpha t \right)dt}
Let us consider α=2\alpha =2 in the first case,
I=04πet(sin62t+cos42t)dt\Rightarrow I=\int\limits_{0}^{4\pi }{{{e}^{t}}\left( {{\sin }^{6}}2t+{{\cos }^{4}}2t \right)dt}
Let us split this into 4 intervals each of interval π.\pi . Also consider f(t)=et(sin62t+cos42t).f\left( t \right)={{e}^{t}}\left( {{\sin }^{6}}2t+{{\cos }^{4}}2t \right).
I=0πf(t)dt+π2πf(t)dt+2π3πf(t)dt+3π4πf(t)dt\Rightarrow I=\int\limits_{0}^{\pi }{f\left( t \right)dt}+\int\limits_{\pi }^{2\pi }{f\left( t \right)dt}+\int\limits_{2\pi }^{3\pi }{f\left( t \right)dt}+\int\limits_{3\pi }^{4\pi }{f\left( t \right)dt}
Let us assume each of this term as I1,I2,I3,I4{{I}_{1}},{{I}_{2}},{{I}_{3}},{{I}_{4}} respectively.
I=I1+I2+I3+I4\Rightarrow I={{I}_{1}}+{{I}_{2}}+{{I}_{3}}+{{I}_{4}}
For I1,{{I}_{1}}, let t=x,t=x, and dt=dx.dt=dx. Hence, I1{{I}_{1}} is given by 0πf(x)dx.\int\limits_{0}^{\pi }{f\left( x \right)dx}.
Substituting for f(x),f\left( x \right),
I1=0πex(sin62x+cos42x)dx\Rightarrow {{I}_{1}}=\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}2x+{{\cos }^{4}}2x \right)dx}
Consider I2{{I}_{2}} and substitute t=π+x.t=\pi +x. Differentiating this,
dt=dx\Rightarrow dt=dx
Because of this, the limits change from 0 to π.\pi . Therefore, I2{{I}_{2}} can be written as,
I2=0πf(π+x)dx\Rightarrow {{I}_{2}}=\int\limits_{0}^{\pi }{f\left( \pi +x \right)dx}
Substituting for f(x),f\left( x \right),
I2=0πex+π(sin62(x+π)+cos42(x+π))dx\Rightarrow {{I}_{2}}=\int\limits_{0}^{\pi }{{{e}^{x+\pi }}\left( {{\sin }^{6}}2\left( x+\pi \right)+{{\cos }^{4}}2\left( x+\pi \right) \right)dx}
Multiplying the term in brackets, cos and sin repeat after every 2π2\pi values, hence we can just write the term as 2x. Also, the ex+π{{e}^{x+\pi }} can be represented as ex.eπ.{{e}^{x}}.{{e}^{\pi }}. This eπ{{e}^{\pi }} can be taken outside the integral since it’s a constant.
I2=eπ0πex(sin62x+cos42x)dx\Rightarrow {{I}_{2}}={{e}^{\pi }}\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}2x+{{\cos }^{4}}2x \right)dx}
Similarly, for the term I3,{{I}_{3}}, let us consider t=2π+x.t=2\pi +x. For this again, dt=dxdt=dx and the limits change from 0 to π.\pi . Therefore, I3{{I}_{3}} can be written as,
I3=0πf(2π+x)dx\Rightarrow {{I}_{3}}=\int\limits_{0}^{\pi }{f\left( 2\pi +x \right)dx}
Substituting for f(x),f\left( x \right),
I3=0πex+2π(sin62(x+2π)+cos42(x+2π))dx\Rightarrow {{I}_{3}}=\int\limits_{0}^{\pi }{{{e}^{x+2\pi }}\left( {{\sin }^{6}}2\left( x+2\pi \right)+{{\cos }^{4}}2\left( x+2\pi \right) \right)dx}
Multiplying the term in brackets, cos and sin repeat after every multiple of 2π2\pi values, hence we can just write the term as 2x. Also, the ex+2π{{e}^{x+2\pi }} can be represented as ex.e2π.{{e}^{x}}.{{e}^{2\pi }}. This e2π{{e}^{2\pi }} can be taken outside the integral since it’s a constant.
I3=e2π0πex(sin62x+cos42x)dx\Rightarrow {{I}_{3}}={{e}^{2\pi }}\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}2x+{{\cos }^{4}}2x \right)dx}
Similarly, for the term I4,{{I}_{4}}, let us consider t=3π+x.t=3\pi +x. For this again, dt=dxdt=dx and the limits change from 0 to π.\pi. Therefore, I4{{I}_{4}} can be written as,
I4=0πf(3π+x)dx\Rightarrow {{I}_{4}}=\int\limits_{0}^{\pi }{f\left( 3\pi +x \right)dx}
Substituting for f(x),f\left( x \right),
I4=0πex+3π(sin62(x+3π)+cos42(x+3π))dx\Rightarrow {{I}_{4}}=\int\limits_{0}^{\pi }{{{e}^{x+3\pi }}\left( {{\sin }^{6}}2\left( x+3\pi \right)+{{\cos }^{4}}2\left( x+3\pi \right) \right)dx}
Multiplying the term in brackets, cos and sin repeat after every multiple of 2π2\pi values, hence we can just write the term as 2x. Also, the ex+3π{{e}^{x+3\pi }} can be represented as ex.e3π.{{e}^{x}}.{{e}^{3\pi }}. This e3π{{e}^{3\pi }} can be taken outside the integral since it’s a constant.
I4=e3π0πex(sin62x+cos42x)dx\Rightarrow {{I}_{4}}={{e}^{3\pi }}\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}2x+{{\cos }^{4}}2x \right)dx}
Substituting this in the equation 1 for the numerator and denominator,
L=II1=I1+I2+I3+I4I1\Rightarrow L=\dfrac{I}{{{I}_{1}}}=\dfrac{{{I}_{1}}+{{I}_{2}}+{{I}_{3}}+{{I}_{4}}}{{{I}_{1}}}
Substituting for these values and taking the term common out from the numerator,
L=(1+eπ+e2π+e3π)0πex(sin62x+cos42x)dx0πex(sin62x+cos42x)dx\Rightarrow L=\dfrac{\left( 1+{{e}^{\pi }}+{{e}^{2\pi }}+{{e}^{3\pi }} \right)\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}2x+{{\cos }^{4}}2x \right)dx}}{\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}2x+{{\cos }^{4}}2x \right)dx}}
Cancelling the common terms in numerator and denominator,
L=(1+eπ+e2π+e3π)\Rightarrow L=\left( 1+{{e}^{\pi }}+{{e}^{2\pi }}+{{e}^{3\pi }} \right)
We know that the geometric progression can be written in a general form as a(rn1)r1,\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}, where a is the first term, n is the number of terms, r is the common ratio. We represent L in this form,
L=e4π1eπ1\Rightarrow L=\dfrac{{{e}^{4\pi }}-1}{{{e}^{\pi }}-1}
Hence, option A is correct.
Similarly, we solve for α=4.\alpha =4. Let us consider the numerator term as I.I.
I=04πet(sin64t+cos44t)dt\Rightarrow I=\int\limits_{0}^{4\pi }{{{e}^{t}}\left( {{\sin }^{6}}4t+{{\cos }^{4}}4t \right)dt}
Let us split this into 4 intervals each of interval π.\pi . Also consider f(t)=et(sin64t+cos44t).f\left( t \right)={{e}^{t}}\left( {{\sin }^{6}}4t+{{\cos }^{4}}4t \right).
I=0πf(t)dt+π2πf(t)dt+2π3πf(t)dt+3π4πf(t)dt\Rightarrow I=\int\limits_{0}^{\pi }{f\left( t \right)dt}+\int\limits_{\pi }^{2\pi }{f\left( t \right)dt}+\int\limits_{2\pi }^{3\pi }{f\left( t \right)dt}+\int\limits_{3\pi }^{4\pi }{f\left( t \right)dt}
Let us assume each of this term as I1,I2,I3,I4{{I}_{1}},{{I}_{2}},{{I}_{3}},{{I}_{4}} respectively.
I=I1+I2+I3+I4\Rightarrow I={{I}_{1}}+{{I}_{2}}+{{I}_{3}}+{{I}_{4}}
For I1,{{I}_{1}}, let t=x,t=x, and dt=dx.dt=dx. Hence, I1{{I}_{1}} is given by 0πf(x)dx.\int\limits_{0}^{\pi }{f\left( x \right)dx}.
Substituting for f(x),f\left( x \right),
I1=0πex(sin64x+cos44x)dx\Rightarrow {{I}_{1}}=\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}4x+{{\cos }^{4}}4x \right)dx}
Consider I2{{I}_{2}} and substitute t=π+x.t=\pi +x. Differentiating this,
dt=dx\Rightarrow dt=dx
Because of this, the limits change from 0 to π.\pi . Therefore, I2{{I}_{2}} can be written as,
I2=0πf(π+x)dx\Rightarrow {{I}_{2}}=\int\limits_{0}^{\pi }{f\left( \pi +x \right)dx}
Substituting for f(x),f\left( x \right),
I2=0πex+π(sin64(x+π)+cos44(x+π))dx\Rightarrow {{I}_{2}}=\int\limits_{0}^{\pi }{{{e}^{x+\pi }}\left( {{\sin }^{6}}4\left( x+\pi \right)+{{\cos }^{4}}4\left( x+\pi \right) \right)dx}
Multiplying the term in brackets, cos and sin repeat after every 2π2\pi values, hence we can just write the term as 4x. Also, the ex+π{{e}^{x+\pi }} can be represented as ex.eπ.{{e}^{x}}.{{e}^{\pi }}. This eπ{{e}^{\pi }} can be taken outside the integral since it’s a constant.
I2=eπ0πex(sin64x+cos44x)dx\Rightarrow {{I}_{2}}={{e}^{\pi }}\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}4x+{{\cos }^{4}}4x \right)dx}
Similarly, for the term I3,{{I}_{3}}, let us consider t=2π+x.t=2\pi +x. For this again, dt=dxdt=dx and the limits change from 0 to π.\pi . Therefore, I3{{I}_{3}} can be written as,
I3=0πf(2π+x)dx\Rightarrow {{I}_{3}}=\int\limits_{0}^{\pi }{f\left( 2\pi +x \right)dx}
Substituting for f(x),f\left( x \right),
I3=0πex+2π(sin64(x+2π)+cos44(x+2π))dx\Rightarrow {{I}_{3}}=\int\limits_{0}^{\pi }{{{e}^{x+2\pi }}\left( {{\sin }^{6}}4\left( x+2\pi \right)+{{\cos }^{4}}4\left( x+2\pi \right) \right)dx}
Multiplying the term in brackets, cos and sin repeat after every multiple of 2π2\pi values, hence we can just write the term as 4x. Also, the ex+2π{{e}^{x+2\pi }} can be represented as ex.e2π.{{e}^{x}}.{{e}^{2\pi }}. This e2π{{e}^{2\pi }} can be taken outside the integral since it’s a constant.
I3=e2π0πex(sin64x+cos44x)dx\Rightarrow {{I}_{3}}={{e}^{2\pi }}\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}4x+{{\cos }^{4}}4x \right)dx}
Similarly, for the term I4,{{I}_{4}}, let us consider t=3π+x.t=3\pi +x. For this again, dt=dxdt=dx and the limits change from 0 to π.\pi . Therefore, I4{{I}_{4}} can be written as,
I4=0πf(3π+x)dx\Rightarrow {{I}_{4}}=\int\limits_{0}^{\pi }{f\left( 3\pi +x \right)dx}
Substituting for f(x),f\left( x \right),
I4=0πex+3π(sin64(x+3π)+cos44(x+3π))dx\Rightarrow {{I}_{4}}=\int\limits_{0}^{\pi }{{{e}^{x+3\pi }}\left( {{\sin }^{6}}4\left( x+3\pi \right)+{{\cos }^{4}}4\left( x+3\pi \right) \right)dx}
Multiplying the term in brackets, cos and sin repeat after every multiple of 2π2\pi values, hence we can just write the term as 4x. Also, the ex+3π{{e}^{x+3\pi }} can be represented as ex.e3π.{{e}^{x}}.{{e}^{3\pi }}. This e3π{{e}^{3\pi }} can be taken outside the integral since it’s a constant.
I4=e3π0πex(sin64x+cos44x)dx\Rightarrow {{I}_{4}}={{e}^{3\pi }}\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}4x+{{\cos }^{4}}4x \right)dx}
Substituting this in the equation 1 for the numerator and denominator,
L=II1=I1+I2+I3+I4I1\Rightarrow L=\dfrac{I}{{{I}_{1}}}=\dfrac{{{I}_{1}}+{{I}_{2}}+{{I}_{3}}+{{I}_{4}}}{{{I}_{1}}}
Substituting for these values and taking the term common out from the numerator,
L=(1+eπ+e2π+e3π)0πex(sin64x+cos44x)dx0πex(sin64x+cos44x)dx\Rightarrow L=\dfrac{\left( 1+{{e}^{\pi }}+{{e}^{2\pi }}+{{e}^{3\pi }} \right)\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}4x+{{\cos }^{4}}4x \right)dx}}{\int\limits_{0}^{\pi }{{{e}^{x}}\left( {{\sin }^{6}}4x+{{\cos }^{4}}4x \right)dx}}
Cancelling the common terms in numerator and denominator,
L=(1+eπ+e2π+e3π)\Rightarrow L=\left( 1+{{e}^{\pi }}+{{e}^{2\pi }}+{{e}^{3\pi }} \right)
We know that the geometric progression can be written in a general form as a(rn1)r1,\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}, where a is the first term, n is the number of terms, r is the common ratio. We represent L in this form,
L=e4π1eπ1\Rightarrow L=\dfrac{{{e}^{4\pi }}-1}{{{e}^{\pi }}-1}

Hence, option C is the other correct option. Hence, the two correct options are A and C.

Note:
We need to know the basics of integration limits and their conversions. We need to be careful while changing the variable, we need to change the limits too. Students must be careful while considering the geometric progression too.