Solveeit Logo

Question

Question: The opposite angular points of a square are \(( 3,4 )\) and \(( 1 , - 1 )\). Then the co-ordinates o...

The opposite angular points of a square are (3,4)( 3,4 ) and (1,1)( 1 , - 1 ). Then the co-ordinates of other two points are.

A

D(12,92),B(12,52)D \left( \frac { 1 } { 2 } , \frac { 9 } { 2 } \right) , B \left( - \frac { 1 } { 2 } , \frac { 5 } { 2 } \right)

B

D(12,92),B(12,52)D \left( \frac { 1 } { 2 } , \frac { 9 } { 2 } \right) , B \left( \frac { 1 } { 2 } , \frac { 5 } { 2 } \right)

C

D(92,12),B(12,52)D \left( \frac { 9 } { 2 } , \frac { 1 } { 2 } \right) , B \left( - \frac { 1 } { 2 } , \frac { 5 } { 2 } \right)

D

None of these

Answer

D(92,12),B(12,52)D \left( \frac { 9 } { 2 } , \frac { 1 } { 2 } \right) , B \left( - \frac { 1 } { 2 } , \frac { 5 } { 2 } \right)

Explanation

Solution

Obviously, slope of AC=5/2A C = 5 / 2 .

Let m be the slope of a line inclined at an angle of 4545 ^ { \circ }to AC, then tan45=±m521+m52m=73,37\tan 45 ^ { \circ } = \pm \frac { m - \frac { 5 } { 2 } } { 1 + m \cdot \frac { 5 } { 2 } } \Rightarrow m = - \frac { 7 } { 3 } , \frac { 3 } { 7 }.

Thus, let the slope of AB or DC be 3/7and that of AD or BC be 73- \frac { 7 } { 3 } . Then equation of AB is 3x7y+19=03 x - 7 y + 19 = 0.

Also the equation of BC is 7x+3y4=07 x + 3 y - 4 = 0.

On solving these equations, we get, B(12,52)B \left( - \frac { 1 } { 2 } , \frac { 5 } { 2 } \right).

Now let the coordinates of the vertex D be (h, k). Since the middle points of AC and BD are same, therefore 12(h12)=12(3+1)h=92\frac { 1 } { 2 } \left( h - \frac { 1 } { 2 } \right) = \frac { 1 } { 2 } ( 3 + 1 ) \Rightarrow h = \frac { 9 } { 2 }, 12(k+52)=12(41)\frac { 1 } { 2 } \left( k + \frac { 5 } { 2 } \right) = \frac { 1 } { 2 } ( 4 - 1 )

k=12k = \frac { 1 } { 2 }. Hence, D=(92,12)D = \left( \frac { 9 } { 2 } , \frac { 1 } { 2 } \right).