Solveeit Logo

Question

Question: The only value of x for which \(2^{\sin x} + 2^{\cos x} > 2^{1 - (1/\sqrt{2})}\) hold is...

The only value of x for which 2sinx+2cosx>21(1/2)2^{\sin x} + 2^{\cos x} > 2^{1 - (1/\sqrt{2})} hold is

A

5π4\frac{5\pi}{4}

B

3π4\frac{3\pi}{4}

C

π2\frac{\pi}{2}

D

All values of x.

Answer

5π4\frac{5\pi}{4}

Explanation

Solution

Since A.M. \geqG.M.

12(2sinx+2cosx)2sinx.2cosx\frac{\mathbf{1}}{\mathbf{2}}\mathbf{(}\mathbf{2}^{\mathbf{\sin}\mathbf{x}}\mathbf{+}\mathbf{2}^{\mathbf{\cos}\mathbf{x}}\mathbf{) \geq}\sqrt{\mathbf{2}^{\mathbf{\sin}\mathbf{x}}\mathbf{.}\mathbf{2}^{\mathbf{\cos}\mathbf{x}}} \Rightarrow 2sinx+2cosx2.2sinx+cosx2\mathbf{2}^{\mathbf{\sin}\mathbf{x}}\mathbf{+}\mathbf{2}^{\mathbf{\cos}\mathbf{x}}\mathbf{\geq}\mathbf{2.}\mathbf{2}^{\frac{\mathbf{\sin}\mathbf{x}\mathbf{+}\mathbf{\cos}\mathbf{x}}{\mathbf{2}}}

\mathbf{\Rightarrow} 2sinx+2cosx21+sinx+cosx2\mathbf{2}^{\mathbf{\sin}\mathbf{x}}\mathbf{+}\mathbf{2}^{\mathbf{\cos}\mathbf{x}}\mathbf{\geq}\mathbf{2}^{\mathbf{1 +}\frac{\mathbf{\sin}\mathbf{x}\mathbf{+}\mathbf{\cos}\mathbf{x}}{\mathbf{2}}}

And, we know that sinx+cosx2\sin x + \cos x \geq - \sqrt{2}

2sinx+2cosx>21(1/2)\therefore 2^{\sin x} + 2^{\cos x} > 2^{1 - (1/\sqrt{2})} for x=5π4.x = \frac{5\pi}{4}.