Solveeit Logo

Question

Mathematics Question on integral

The only integral root of the equation 2y23 25y6 3410y=0\begin{vmatrix}2-y&2&3\\\ 2&5-y&6\\\ 3&4&10-y\end{vmatrix} =0 is

A

y=3y = 3

B

y=2y = 2

C

y=1y = 1

D

NoneoftheseNone\, of\, these

Answer

y=1y = 1

Explanation

Solution

We have, 2y23 25y6 3410y=0\begin{vmatrix}2-y&2&3\\\ 2&5-y&6\\\ 3&4&10-y\end{vmatrix} = 0 (2r)[(5y)(10y)24]2[2(10y)18]\Rightarrow\left(2 - r\right)\left[\left(5-y\right)\left(10-y\right)-24\right]-2\left[2\left(10-y\right)-18\right]
+3[83(5y)]=0+3\left[8 - 3\left(5-y\right)\right] = 0
(2y)[5015y+y224]2[202y18]\Rightarrow\left(2 -y\right)\left[50 - 15y + y^{2} -24\right]-2\left[20 - 2y -18\right]
+3[815+3y]=0+ 3\left[8-15 + 3y\right] = 0
(2y)[y215y+26]\Rightarrow\left(2 -y\right)\left[y^{2} -15y +26\right]
2[22y]+3[3y7]=0-2\left[2-2y\right]+ 3\left[3y-7\right] = 0
2y230y+52y3+15y226y4+4y\Rightarrow 2y^{2} -30 y + 52 -y^{3} + 15 y^{2} - 26 y - 4 + 4y
+9y21=0+ 9 y - 21 = 0
y3+17y243y+27=0\Rightarrow -y^{3} + 17 y^{2} - 43 y + 27 = 0
y317y2+43y27=0\Rightarrow y^{3} - 17y^{2} + 43y -27 = 0
(y1)(y216y+27)=0\Rightarrow\left(y-1\right)\left(y^{2}-16y+27\right) = 0
y1=0\Rightarrow y -1 = 0 or y216y+27=0y^{2 } - 16 y + 27 = 0
y=1\Rightarrow y = 1