Solveeit Logo

Question

Physics Question on laws of motion

The object at rest suddenly explodes into three parts with the mass ratio 2:1:1. The parts of equal masses move at right angles to each other with equal speeds. The speed of the third part after the explosion will be

A

2v

B

v/ 2\sqrt{2}

C

v/2

D

2\sqrt{2} v

Answer

v/ 2\sqrt{2}

Explanation

Solution

Let the speed of the third part be v3.{{v}_{3}}. Applying the law of conservation of momentum, we have p12+p22=p\sqrt{p_{1}^{2}+p_{2}^{2}}=p \Rightarrow p12+p22=p2p_{1}^{2}+p_{2}^{2}={{p}^{2}} \therefore (m1v1)2+(m2v2)2=(m3v3)2{{({{m}_{1}}{{v}_{1}})}^{2}}+{{({{m}_{2}}{{v}_{2}})}^{2}}={{({{m}_{3}}{{v}_{3}})}^{2}} \Rightarrow (m×v)2+(m×v)2=(2m×v3)2{{(m\times v)}^{2}}+{{(m\times v)}^{2}}={{(2m\times {{v}_{3}})}^{2}} \Rightarrow m2v2+m2v2=4m2v32{{m}^{2}}{{v}^{2}}+{{m}^{2}}{{v}^{2}}=4{{m}^{2}}v_{3}^{2} \Rightarrow 2m2v2=4m2vm22{{m}^{2}}{{v}^{2}}=4{{m}^{2}}v_{m}^{2} \Rightarrow v3=v2{{v}_{3}}=\frac{v}{\sqrt{2}}