Solveeit Logo

Question

Question: The numerically greatest term in the expansion of $(1 - 4x)^6$ at $x = \frac{3}{2}$ is...

The numerically greatest term in the expansion of (14x)6(1 - 4x)^6 at x=32x = \frac{3}{2} is

A

6^6

B

5^6

C

132(4)5\frac{13}{2}(4)^5

D

72(4)5\frac{7}{2}(4)^5

Answer

6^6

Explanation

Solution

The general term in the expansion of (14x)6(1-4x)^6 is Tr+1=(6r)(1)6r(4x)rT_{r+1} = \binom{6}{r} (1)^{6-r} (-4x)^r. The ratio of consecutive terms is Tr+1Tr=6r+1r4x1\frac{|T_{r+1}|}{|T_r|} = \left| \frac{6-r+1}{r} \cdot \frac{-4x}{1} \right|. Substituting x=32x = \frac{3}{2}, we get Tr+1Tr=7rr(6)=6(7r)r\frac{|T_{r+1}|}{|T_r|} = \left| \frac{7-r}{r} \cdot (-6) \right| = \frac{6(7-r)}{r}. We want to find rr such that Tr+1Tr1\frac{|T_{r+1}|}{|T_r|} \ge 1, which gives 6(7r)r1\frac{6(7-r)}{r} \ge 1, so 426rr42 - 6r \ge r, leading to 427r42 \ge 7r, or 6r6 \ge r. This implies that T1T2T6T7|T_1| \le |T_2| \le \dots \le |T_6| \le |T_7|. Thus, T6T_6 and T7T_7 are the numerically greatest terms. T6=(65)(4)5(32)5=6×(1024)×24332=46656T_6 = \binom{6}{5} (-4)^5 (\frac{3}{2})^5 = 6 \times (-1024) \times \frac{243}{32} = -46656. T7=(66)(4)6(32)6=1×4096×72964=46656T_7 = \binom{6}{6} (-4)^6 (\frac{3}{2})^6 = 1 \times 4096 \times \frac{729}{64} = 46656. The numerically greatest term is 4665646656, which is 666^6.