Solveeit Logo

Question

Mathematics Question on permutations and combinations

The number of ways of getting a sum 16 on throwing a dice four times is __________.

Answer

Given expression:

(x1+x2++x6)4(x^1 + x^2 + \dots + x^6)^4

Rewriting using binomial expansion:

x4(1x61x)4x^4 \left( \frac{1 - x^6}{1 - x} \right)^4

Expanding:

x4(1x6)4(1x)4x^4 (1 - x^6)^4 (1 - x)^{-4}

Further expanding using binomial theorem:

x4[14x6+6x12](1x)4x^4 [1 - 4x^6 + 6x^{12} \dots ] \cdot (1 - x)^{-4}

Applying binomial expansion to each term:

(x44x10+6x16)(1+(1512)x12+(96)x6)(x^4 - 4x^{10} + 6x^{16} \dots ) \cdot (1 + \binom{15}{12}x^{12} + \binom{9}{6}x^6 \dots)

Simplifying:

(x44x10+6x16)(1+(1512)x12+(96)x6)(x^4 - 4x^{10} + 6x^{16}) \cdot \left(1 + \binom{15}{12}x^{12} + \binom{9}{6}x^6 \dots \right)

Computing coefficients:

(153)4(96)+6\binom{15}{3} - 4 \cdot \binom{9}{6} + 6

Calculating values:

=35×136×8×7+6= 35 \times 13 - 6 \times 8 \times 7 + 6

Simplifying further:

=455336+6= 455 - 336 + 6

Final result: =125= 125