Solveeit Logo

Question

Mathematics Question on Addition of Vectors

The number of vectors of unit length perpendicular to the vectors a=2i^+j^+2k^\vec{a} = 2\hat{i} +\hat{j } +2\hat{k} and b=j^+k^\vec{b} = \hat{j} + \hat{k} is

A

one

B

two

C

three

D

infinite

Answer

two

Explanation

Solution

Let c=c1i^+c2j^+c3k^\vec{c} = c_{1} \hat{i}+c_{2}\hat{j} +c_{3} \hat{k} be the unit vector which is perpendicular to both a\vec{a} and b\vec{b} , then ac=02c1+c2+c3=0...(i)\vec{a} \cdot \vec{c} = 0 \Rightarrow 2c_{1} +c_{2} +c_{3} = 0 \quad...\left(i\right) and bc=0c2+c3=0...(ii)\vec{b} \cdot \vec{c} = 0 \Rightarrow c_{2} + c_{3} = 0 \quad...\left(ii\right) c \vec{c} is unit vector c12+c22+c32=1...(iii) \Rightarrow c_{1}^{2} + c_{2}^{2} + c_{3}^{2} = 1 \quad...\left(iii\right) From e (i)\left(i\right) and (ii)\left(ii\right), we get 2c1+c3=0...(iv) 2c_{1} + c_{3} = 0 \quad...\left(iv\right) From e (ii)\left(ii\right) and (iii)\left(iii\right), we get c12+2c32=1...(v)c_1^{2} +2c_3^{2} =1 \quad ...\left(v\right) Now, from e (iv)\left(iv\right) and (v)\left(v\right) c12+2(2c1)2=1c_{1}^{2} +2\left(-2c_{1}\right)^{2} =1 c12+8c12=1\Rightarrow c_{1}^{2} + 8c_{1}^{2} = 1 c12=19 \Rightarrow c_{1}^{2} = \frac{1}{9} c1=±13 \Rightarrow c_{1} = \pm\frac{1}{3} Putting the value of c1c_{1} in e (iv)\left(iv\right), we get c3=23c_{3} = \mp\frac{2}{3} Now, from e (i)\left(i\right) c2=2(c1+c3)c_{2} = -2 \left(c_{1} +c_{3}\right) If c1=13c_{1} = -\frac{1}{3}, then c3=23c_{3} = \frac{-2}{3} c2=2[12+23]=2[13]=23\therefore c_{2} = -2\left[\frac{-1}{2} +\frac{2}{3}\right] = -2\left[\frac{1}{3}\right] = \frac{-2}{3} Hence, vector c=13i^+23j^23k^\vec{c} = \frac{1}{3}\hat{i} +\frac{2}{3}\hat{j} -\frac{2}{3} \hat{k} and c=13i^23j^+23k^\vec{c} =-\frac{1}{3}\hat{i}- \frac{2}{3}\hat{j}+\frac{2}{3}\hat{k} Hence, there are two unit vectors perpendicular to the given vectors a&b\vec{a}\, \&\, \vec{b}.