Solveeit Logo

Question

Question: The number of values of x satisfying the equation $\tan^{-1}(x^2 + 5|x| + 20) + \cot^{-1}(4\pi + \si...

The number of values of x satisfying the equation tan1(x2+5x+20)+cot1(4π+sin1(sin14))=π2\tan^{-1}(x^2 + 5|x| + 20) + \cot^{-1}(4\pi + \sin^{-1}(\sin 14)) = \frac{\pi}{2} is

Answer

0

Explanation

Solution

The given equation is tan1(x2+5x+20)+cot1(4π+sin1(sin14))=π2\tan^{-1}(x^2 + 5|x| + 20) + \cot^{-1}(4\pi + \sin^{-1}(\sin 14)) = \frac{\pi}{2}.

We use the identity tan1(y)+cot1(y)=π2\tan^{-1}(y) + \cot^{-1}(y) = \frac{\pi}{2} for all yRy \in \mathbb{R}. For the given equation to hold, the arguments of tan1\tan^{-1} and cot1\cot^{-1} must be equal. Let A=x2+5x+20A = x^2 + 5|x| + 20 and B=4π+sin1(sin14)B = 4\pi + \sin^{-1}(\sin 14). The equation implies A=BA = B.

First, let's evaluate the term sin1(sin14)\sin^{-1}(\sin 14). The function sin1(sinθ)=θnπ\sin^{-1}(\sin \theta) = \theta - n\pi, where nn is an integer such that θnπ[π2,π2]\theta - n\pi \in [-\frac{\pi}{2}, \frac{\pi}{2}]. Here θ=14\theta = 14. We need to find an integer nn such that π214nππ2-\frac{\pi}{2} \le 14 - n\pi \le \frac{\pi}{2}. Dividing by π\pi, we get 1214πn12-\frac{1}{2} \le \frac{14}{\pi} - n \le \frac{1}{2}. This is equivalent to n1214πn+12n - \frac{1}{2} \le \frac{14}{\pi} \le n + \frac{1}{2}, which means nn is the integer closest to 14π\frac{14}{\pi}. Using the approximation π3.14159\pi \approx 3.14159, we have 14π143.141594.4563\frac{14}{\pi} \approx \frac{14}{3.14159} \approx 4.4563. The closest integer to 4.45634.4563 is n=4n=4. Let's check if 144π14 - 4\pi is in the range [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]. 144π144(3.14159)=1412.56636=1.4336414 - 4\pi \approx 14 - 4(3.14159) = 14 - 12.56636 = 1.43364. Since π21.5708\frac{\pi}{2} \approx 1.5708, we have 1.57081.433641.5708-1.5708 \le 1.43364 \le 1.5708. So, sin1(sin14)=144π\sin^{-1}(\sin 14) = 14 - 4\pi.

Now substitute this value back into the expression for BB: B=4π+sin1(sin14)=4π+(144π)=14B = 4\pi + \sin^{-1}(\sin 14) = 4\pi + (14 - 4\pi) = 14.

Now, we set A=BA = B: x2+5x+20=14x^2 + 5|x| + 20 = 14. x2+5x+6=0x^2 + 5|x| + 6 = 0.

Let y=xy = |x|. Since x2=x2=y2x^2 = |x|^2 = y^2, the equation becomes a quadratic equation in yy: y2+5y+6=0y^2 + 5y + 6 = 0. Factor the quadratic equation: (y+2)(y+3)=0(y+2)(y+3) = 0. The solutions for yy are y=2y = -2 and y=3y = -3.

Substitute back y=xy = |x|: x=2|x| = -2 or x=3|x| = -3. The absolute value of a real number is always non-negative. Therefore, x0|x| \ge 0 for all real xx. Since 2<0-2 < 0 and 3<0-3 < 0, neither x=2|x| = -2 nor x=3|x| = -3 has any real solutions for xx.

Thus, the equation x2+5x+6=0x^2 + 5|x| + 6 = 0 has no real solutions. This means there are no values of xx that satisfy the original equation. The number of values of xx satisfying the equation is 0.