Solveeit Logo

Question

Question: The number of values of x lying in $[-\pi, \pi]$ and satisfying $2\sin^2 \theta = \cos 2\theta$ and ...

The number of values of x lying in [π,π][-\pi, \pi] and satisfying 2sin2θ=cos2θ2\sin^2 \theta = \cos 2\theta and sin2θ+2cos2θcosθ1=0\sin 2\theta + 2\cos 2\theta - \cos \theta - 1 = 0 is

A

0

B

2

C

4

D

6

Answer

2

Explanation

Solution

Assuming the variable θ\theta in the question is a typo and should be xx:

The first equation is 2sin2x=cos2x2\sin^2 x = \cos 2x. Using the identity cos2x=12sin2x\cos 2x = 1 - 2\sin^2 x, we get: 2sin2x=12sin2x2\sin^2 x = 1 - 2\sin^2 x 4sin2x=14\sin^2 x = 1 sin2x=14\sin^2 x = \frac{1}{4} sinx=±12\sin x = \pm \frac{1}{2}

For x[π,π]x \in [-\pi, \pi], the solutions are x{π6,5π6,π6,5π6}x \in \{\frac{\pi}{6}, \frac{5\pi}{6}, -\frac{\pi}{6}, -\frac{5\pi}{6}\}.

For these values, cos2x=12sin2x=12(14)=12\cos 2x = 1 - 2\sin^2 x = 1 - 2(\frac{1}{4}) = \frac{1}{2}.

The second equation is sin2x+2cos2xcosx1=0\sin 2x + 2\cos 2x - \cos x - 1 = 0. Substituting cos2x=12\cos 2x = \frac{1}{2}: sin2x+2(12)cosx1=0\sin 2x + 2(\frac{1}{2}) - \cos x - 1 = 0 sin2x+1cosx1=0\sin 2x + 1 - \cos x - 1 = 0 sin2xcosx=0\sin 2x - \cos x = 0

Using sin2x=2sinxcosx\sin 2x = 2\sin x \cos x: 2sinxcosxcosx=02\sin x \cos x - \cos x = 0 cosx(2sinx1)=0\cos x (2\sin x - 1) = 0

This means cosx=0\cos x = 0 or sinx=12\sin x = \frac{1}{2}.

We need to find the values from {π6,5π6,π6,5π6}\{\frac{\pi}{6}, \frac{5\pi}{6}, -\frac{\pi}{6}, -\frac{5\pi}{6}\} that also satisfy cosx=0\cos x = 0 or sinx=12\sin x = \frac{1}{2}.

  • For x=π6x = \frac{\pi}{6}: sinx=12\sin x = \frac{1}{2}. This satisfies the condition.
  • For x=5π6x = \frac{5\pi}{6}: sinx=12\sin x = \frac{1}{2}. This satisfies the condition.
  • For x=π6x = -\frac{\pi}{6}: sinx=12\sin x = -\frac{1}{2} and cosx=32\cos x = \frac{\sqrt{3}}{2}. This does not satisfy cosx=0\cos x = 0 or sinx=12\sin x = \frac{1}{2}.
  • For x=5π6x = -\frac{5\pi}{6}: sinx=12\sin x = -\frac{1}{2} and cosx=32\cos x = -\frac{\sqrt{3}}{2}. This does not satisfy cosx=0\cos x = 0 or sinx=12\sin x = \frac{1}{2}.

Thus, the common solutions are x=π6x = \frac{\pi}{6} and x=5π6x = \frac{5\pi}{6}. There are 2 such values.