Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The number of values of x in the interval (π4,7π4)(\frac \pi 4, \frac {7\pi }{4}) for which 14cosec2x2sin2x=214cos2x14cosec^2x – 2sin^2x = 21 – 4cos^2x holds, is ______.

Answer

14cosec2x2sin2x=214cos2x14cosec^2x – 2sin^2x = 21 – 4cos^2x
14sin2x2sin2x=214(1sin2x)\frac {14}{sin^2⁡x}−2sin^2⁡ x = 21−4(1−sin^2⁡x)
Let sin2x=tsin^2x = t
142t2=21t4t\+4t2⇒ 14 – 2t^2 = 21t – 4t \+ 4t^2
6t2\+17t14=0⇒ 6t^2 \+ 17t – 14 = 0
6t2\+21t4t14=0⇒ 6t^2 \+ 21t – 4t – 14 = 0
3t(2t\+7)2(2t\+7)=0⇒ 3t(2t \+ 7) – 2(2t \+ 7) = 0
(2t\+7)(3t2)=0⇒ (2t \+ 7) (3t– 2) = 0
t=23 or 72⇒t = \frac 23\ or\ -\frac {7}{2}
sin2x=23 or72⇒ sin^2⁡x=\frac 23\ or −\frac 72 (not cosider)
sin⁡ x=±23⇒ sin⁡\ x=±\sqrt {\frac 23}

The number of values of x in the interval π/4, 7π/4

Therefore, sin⁡ x=±23sin⁡\ x=±\sqrt {\frac 23} has 44 solutions in the interval (π4,7π4)(\frac \pi 4, \frac {7\pi }{4}).