Solveeit Logo

Question

Question: The number of values of x in the interval [0, 5\(2\cos^{2} + 3\cos\theta - 2 = 0\)] satisfying the e...

The number of values of x in the interval [0, 52cos2+3cosθ2=02\cos^{2} + 3\cos\theta - 2 = 0] satisfying the equation cosθ=3±9+164=3±54\cos\theta = \frac{- 3 \pm \sqrt{9 + 16}}{4} = \frac{- 3 \pm 5}{4}is.

A

0

B

5

C

6

D

10

Answer

6

Explanation

Solution

\therefore

2x=(n+12) π or(2n+1) π2x = \left( n + \frac{1}{2} \right)\ \pi\text{ or}(2n + 1)\ \pi \Rightarrow

x=(2n+1)π4 or (2n+1)π2n=2,1,0,1,2x = (2n + 1)\frac{\pi}{4}\text{ or }(2n + 1)\frac{\pi}{2}n = - 2, - 1,0,1,2

\therefore (3sinx1)(sinx2)=0( 3 \sin x - 1 ) ( \sin x - 2 ) = 0 3π2,π2,π2,3π2,5π2\frac{- 3\pi}{2},\frac{- \pi}{2},\frac{\pi}{2}, ⥂ \frac{3\pi}{2},\frac{5\pi}{2} πxπ- \pi \leq x \leq \pi

\Rightarrow sin7θ+sinθsin4θ=0\sin 7\theta + \sin\theta - \sin 4\theta = 0, (\Rightarrow)

Let 2sin4θcos3θsin4θ=02\sin 4\theta\cos 3\theta - \sin 4\theta = 0, \Rightarrow are the solutions in sin4θ(2cos3θ1)=0sin4θ=0, cos3θ=12\sin 4\theta(2\cos 3\theta - 1) = 0 \Rightarrow \sin 4\theta = 0,\ \cos 3\theta = \frac{1}{2}. Then 4θ=04θ=π4\theta = 0 \Rightarrow 4\theta = \pi \Rightarrow θ=π4\theta = \frac{\pi}{4}, cos3θ=12\cos 3\theta = \frac{1}{2} are the

solutions in \Rightarrow.

3θ=π33\theta = \frac{\pi}{3} Required number of solutions = 6.