Question
Question: The number of values of x in the interval [0, 5\(2\cos^{2} + 3\cos\theta - 2 = 0\)] satisfying the e...
The number of values of x in the interval [0, 52cos2+3cosθ−2=0] satisfying the equation cosθ=4−3±9+16=4−3±5is.
A
0
B
5
C
6
D
10
Answer
6
Explanation
Solution
∴
2x=(n+21) π or(2n+1) π ⇒
x=(2n+1)4π or (2n+1)2πn=−2,−1,0,1,2
∴ (3sinx−1)(sinx−2)=0 2−3π,2−π,2π,⥂23π,25π −π≤x≤π
⇒ sin7θ+sinθ−sin4θ=0, (⇒)
Let 2sin4θcos3θ−sin4θ=0, ⇒ are the solutions in sin4θ(2cos3θ−1)=0⇒sin4θ=0, cos3θ=21. Then 4θ=0⇒4θ=π ⇒ θ=4π, cos3θ=21 are the
solutions in ⇒.
3θ=3π Required number of solutions = 6.