Solveeit Logo

Question

Question: The number of values of \(\theta \) in the interval \(\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right...

The number of values of θ\theta in the interval (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) such that θ\theta is not equal to nπ5\dfrac{n\pi }{5} for n = 0,±1,±2,...\pm 1,\pm 2,... and tan(θ)=cot(5θ)\tan \left( \theta \right)=\cot \left( 5\theta \right) as well as sin(2θ)=cos(4θ)\sin \left( 2\theta \right)=\cos \left( 4\theta \right) is
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(f) 5
(g) 6
(h) 7
(i) 8

Explanation

Solution

Hint: We will use the formula cot(θ)=1tan(θ)\cot \left( \theta \right)=\dfrac{1}{\tan \left( \theta \right)} and solve equation tan(θ)=cot(5θ)\tan \left( \theta \right)=\cot \left( 5\theta \right). We will also use tan(θ)=sin(θ)cos(θ)\tan \left( \theta \right)=\dfrac{\sin \left( \theta \right)}{\cos \left( \theta \right)} and trigonometric formulas 2sin(A)sin(B)=cos(AB)cos(A+B)2\sin \left( A \right)\sin \left( B \right)=\cos \left( A-B \right)-\cos \left( A+B \right) and 2cos(A)cos(B)=cos(A+B)+cos(AB)2\cos \left( A \right)\cos \left( B \right)=\cos \left( A+B \right)+\cos \left( A-B \right) in order to solve the question further. Also, we will apply the general solution of cos(x)=cos(y)\cos \left( x \right)=\cos \left( y \right) is x=2nπ±yx=2n\pi \pm y where n is any integer and the general solution of sinx=siny\sin x=\sin y resulting into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y. Moreover, by using the formula of the square root we will find the value of x. The formula of square root is x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.

Complete step-by-step answer:
We will first consider the equation tan(θ)=cot(5θ)\tan \left( \theta \right)=\cot \left( 5\theta \right) and convert the trigonometric term on the right side of the equation into the tangent. We will do this by the formula cot(θ)=1tan(θ)\cot \left( \theta \right)=\dfrac{1}{\tan \left( \theta \right)} therefore, we get
tan(θ)=1tan(5θ) tan(θ)tan(5θ)=1 \begin{aligned} & \tan \left( \theta \right)=\dfrac{1}{\tan \left( 5\theta \right)} \\\ & \Rightarrow \tan \left( \theta \right)\tan \left( 5\theta \right)=1 \\\ \end{aligned}
Now, we will convert this equation into its simplest form which can be given by
tan(θ)=sin(θ)cos(θ)\tan \left( \theta \right)=\dfrac{\sin \left( \theta \right)}{\cos \left( \theta \right)}. After substituting this into the equation we will get
(sin(θ)cos(θ))(sin(5θ)cos(5θ))=1 sin(θ)sin(5θ)cos(θ)cos(5θ)=1 \begin{aligned} & \left( \dfrac{\sin \left( \theta \right)}{\cos \left( \theta \right)} \right)\left( \dfrac{\sin \left( 5\theta \right)}{\cos \left( 5\theta \right)} \right)=1 \\\ & \Rightarrow \dfrac{\sin \left( \theta \right)\sin \left( 5\theta \right)}{\cos \left( \theta \right)\cos \left( 5\theta \right)}=1 \\\ \end{aligned}
After this we will divide the numerator and denominator of the left side of the expression. Therefore, we get 2sin(θ)sin(5θ)2cos(θ)cos(5θ)=1\dfrac{2\sin \left( \theta \right)\sin \left( 5\theta \right)}{2\cos \left( \theta \right)\cos \left( 5\theta \right)}=1.
Now we will use the formula 2sin(A)sin(B)=cos(AB)cos(A+B)2\sin \left( A \right)\sin \left( B \right)=\cos \left( A-B \right)-\cos \left( A+B \right) and 2cos(A)cos(B)=cos(A+B)+cos(AB)2\cos \left( A \right)\cos \left( B \right)=\cos \left( A+B \right)+\cos \left( A-B \right) into the equation so, we will get
cos(θ5θ)cos(θ+5θ)cos(θ+5θ)+cos(θ5θ)=1 cos(4θ)cos(6θ)cos(6θ)+cos(4θ)=1 cos(4θ)cos(6θ)=cos(6θ)+cos(4θ) cos(4θ)cos(6θ)cos(6θ)cos(4θ)=0 2cos(6θ)=0 cos(6θ)=0 \begin{aligned} & \dfrac{\cos \left( \theta -5\theta \right)-\cos \left( \theta +5\theta \right)}{\cos \left( \theta +5\theta \right)+\cos \left( \theta -5\theta \right)}=1 \\\ & \Rightarrow \dfrac{\cos \left( -4\theta \right)-\cos \left( 6\theta \right)}{\cos \left( 6\theta \right)+\cos \left( -4\theta \right)}=1 \\\ & \Rightarrow \cos \left( -4\theta \right)-\cos \left( 6\theta \right)=\cos \left( 6\theta \right)+\cos \left( -4\theta \right) \\\ & \Rightarrow \cos \left( -4\theta \right)-\cos \left( 6\theta \right)-\cos \left( 6\theta \right)-\cos \left( -4\theta \right)=0 \\\ & \Rightarrow -2\cos \left( 6\theta \right)=0 \\\ & \Rightarrow \cos \left( 6\theta \right)=0 \\\ \end{aligned}
As we know that cos(2n+1)π2=0\cos \left( 2n+1 \right)\dfrac{\pi }{2}=0 thus we have cos(6θ)=cos((2n+1)π2)\cos \left( 6\theta \right)=\cos \left( \left( 2n+1 \right)\dfrac{\pi }{2} \right). Therefore, we get cos(6θ)=cos((2n+1)π2)\cos \left( 6\theta \right)=\cos \left( \left( 2n+1 \right)\dfrac{\pi }{2} \right). As we know that the general solution of cos(x)=cos(y)\cos \left( x \right)=\cos \left( y \right) is x=2nπ±yx=2n\pi \pm y where n is any integer so we have 6θ=(2n+1)π26\theta =\left( 2n+1 \right)\dfrac{\pi }{2}. After dividing both the sides by 6 we will get
6θ6=(2n+1)π26 θ=(2n+1)π12 \begin{aligned} & \dfrac{6\theta }{6}=\dfrac{\left( 2n+1 \right)\dfrac{\pi }{2}}{6} \\\ & \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{12} \\\ \end{aligned}
Now we will substitute n = 0. Thus we get that θ=π12\theta =\dfrac{\pi }{12}. Similarly, by substituting the value of n one by one by integers we will get θ=±5π2,±π4,±π12\theta =\pm \dfrac{5\pi }{2},\pm \dfrac{\pi }{4},\pm \dfrac{\pi }{12}.
Now we will consider the equation sin(2θ)=cos(4θ)\sin \left( 2\theta \right)=\cos \left( 4\theta \right) and use the formula cos(4θ)=12sin2(2θ)\cos \left( 4\theta \right)=1-2{{\sin }^{2}}\left( 2\theta \right). Therefore we get sin(2θ)=12sin2(2θ)\sin \left( 2\theta \right)=1-2{{\sin }^{2}}\left( 2\theta \right). Now, we will take all the terms to the left side of the equation thus, we get 2sin2(2θ)+sin(2θ)1=02{{\sin }^{2}}\left( 2\theta \right)+\sin \left( 2\theta \right)-1=0. By substituting
sin(2θ)=x\sin \left( 2\theta \right)=x we will have 2x2+x1=02{{x}^{2}}+x-1=0. By using the formula of the square root we will find the value of x. The formula of square root is x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}. Now we will put a = 2, b = 1 and c = -1 so, we will get
x=1±(1)24(2)(1)2(2) x=1±1+84 x=1±94 x=1±34 \begin{aligned} & x=\dfrac{-1\pm \sqrt{{{\left( 1 \right)}^{2}}-4\left( 2 \right)\left( -1 \right)}}{2\left( 2 \right)} \\\ & \Rightarrow x=\dfrac{-1\pm \sqrt{1+8}}{4} \\\ & \Rightarrow x=\dfrac{-1\pm \sqrt{9}}{4} \\\ & \Rightarrow x=\dfrac{-1\pm 3}{4} \\\ \end{aligned}
So, we now have x=1+34x=\dfrac{-1+3}{4} and x=134x=\dfrac{-1-3}{4}. Thus, we get x=24x=\dfrac{2}{4} and x=44x=-\dfrac{4}{4}. Therefore, the value of x can be x = 12\dfrac{1}{2} and x = - 1. After substituting it again as sin(2θ)=x\sin \left( 2\theta \right)=x we have sin(2θ)=12\sin \left( 2\theta \right)=\dfrac{1}{2} and sin(2θ)=1\sin \left( 2\theta \right)=-1. We will first consider first that sin(2θ)=12\sin \left( 2\theta \right)=\dfrac{1}{2}. As the value of sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} so, we have sin(2θ)=sin(π6)\sin \left( 2\theta \right)=\sin \left( \dfrac{\pi }{6} \right). By the general solution of sinx=siny\sin x=\sin y resulting into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y we will get (2θ)=nπ+(1)n(π6)\left( 2\theta \right)=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{\pi }{6} \right) or θ=nπ2+(1)n(π12)\theta =\dfrac{n\pi }{2}+{{\left( -1 \right)}^{n}}\left( \dfrac{\pi }{12} \right).
Similarly, by sin(2θ)=1\sin \left( 2\theta \right)=-1 and sin(π2)=1\sin \left( \dfrac{\pi }{2} \right)=1 we will have that sin(2θ)=sin(π2)\sin \left( 2\theta \right)=-\sin \left( \dfrac{\pi }{2} \right). As we know that As we know that sin(2n1)π2=1\sin \left( 2n-1 \right)\dfrac{\pi }{2}=1 thus we have sin(2θ)=sin((2n1)π2)\sin \left( 2\theta \right)=\sin \left( \left( 2n-1 \right)\dfrac{\pi }{2} \right). Therefore, we get sin(2θ)=sin((2n1)π2)\sin \left( 2\theta \right)=\sin \left( \left( 2n-1 \right)\dfrac{\pi }{2} \right). As we know that the general solution of sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) is x=nπ±(1)nyx=n\pi \pm {{\left( -1 \right)}^{n}}y where n is any integer so we have 2θ=(2n1)π22\theta =\left( 2n-1 \right)\dfrac{\pi }{2}. Here we have not considered the general solution and ignored the term nπn\pi by substituting n = 0. After dividing both the sides by 2 we will get
2θ2=(2n1)π22 θ=(2n1)π4 \begin{aligned} & \dfrac{2\theta }{2}=\dfrac{\left( 2n-1 \right)\dfrac{\pi }{2}}{2} \\\ & \Rightarrow \theta =\left( 2n-1 \right)\dfrac{\pi }{4} \\\ \end{aligned}
Now we will substitute n = 0. Thus we get that θ=π4\theta =-\dfrac{\pi }{4}. Similarly, by substituting the value of n one by one by integers we will get θ=5π2,π4,π12\theta =\dfrac{5\pi }{2},-\dfrac{\pi }{4},\dfrac{\pi }{12}. After considering the common values from the angle θ\theta we will get that there are only three solutions in total.
Hence, the correct option is (d).

Note: Clearly, this question needs focus to solve . So many formulas are there which are important to solve the question. We can also solve sin(2θ)=sin(π2)\sin \left( 2\theta \right)=-\sin \left( \dfrac{\pi }{2} \right) by using an alternate method. As sine is negative in third and fourth quadrant thus, in the third quadrant we get sin(π2)=sin(π+π2) sin(π2)=sin(2π+π2) sin(π2)=sin(3π2) \begin{aligned} & -\sin \left( \dfrac{\pi }{2} \right)=\sin \left( \pi +\dfrac{\pi }{2} \right) \\\ & \Rightarrow -\sin \left( \dfrac{\pi }{2} \right)=\sin \left( \dfrac{2\pi +\pi }{2} \right) \\\ & \Rightarrow -\sin \left( \dfrac{\pi }{2} \right)=\sin \left( \dfrac{3\pi }{2} \right) \\\ \end{aligned}
This results in sin(2θ)=sin(3π2)\sin \left( 2\theta \right)=\sin \left( \dfrac{3\pi }{2} \right). By the general solution of sinx=siny\sin x=\sin y resulting into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y we will get (2θ)=nπ+(1)n(3π2)\left( 2\theta \right)=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{3\pi }{2} \right) or θ=nπ2+(1)n(3π4)\theta =\dfrac{n\pi }{2}+{{\left( -1 \right)}^{n}}\left( \dfrac{3\pi }{4} \right).
Also, we will not the below equation like so,
sin(2θ)+2sin2(2θ)=1 sin(2θ)(1+2sin(2θ))=1 \begin{aligned} & \sin \left( 2\theta \right)+2{{\sin }^{2}}\left( 2\theta \right)=1 \\\ & \Rightarrow \sin \left( 2\theta \right)\left( 1+2\sin \left( 2\theta \right) \right)=1 \\\ \end{aligned}
We now have sin(2θ)=1\sin \left( 2\theta \right)=1 and (1+2sin(2θ))=1\left( 1+2\sin \left( 2\theta \right) \right)=1. The equation (1+2sin(2θ))=1\left( 1+2\sin \left( 2\theta \right) \right)=1 can be converted into 1+2sin(2θ)=1  \begin{aligned} & 1+2\sin \left( 2\theta \right)=1 \\\ & \Rightarrow \\\ \end{aligned}Since, we have that sin(π2)=1\sin \left( \dfrac{\pi }{2} \right)=1 therefore sin(2θ)=sin(π2)\sin \left( 2\theta \right)=\sin \left( \dfrac{\pi }{2} \right) and (1+2sin(2θ))=sin(π2)\left( 1+2\sin \left( 2\theta \right) \right)=\sin \left( \dfrac{\pi }{2} \right). This will lead to the wrong answer.