Solveeit Logo

Question

Question: The number of triplets \[\left( {x,y,z} \right)\] satisfying \({\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {...

The number of triplets (x,y,z)\left( {x,y,z} \right) satisfying sin1x+sin1y+cos1z=2π{\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\cos ^{ - 1}}z = 2\pi is
A. 1
B. 0
C. 2
D. \infty

Explanation

Solution

We will first write the range of all the given terms. Then, we will find the combination of values for the given condition holds. The number of values possible of triplet (x,y,z)\left( {x,y,z} \right) is the required answer. A required triplet will be the possible values of x,y,zx,y,z which will satisfy the given condition. The order of x,y,zx,y,z is important in writing the triplet.

Complete step by step Answer:

We know that the range of the sin1θ{\sin ^{ - 1}}\theta is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]
That is π2sin1xπ2 - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}x \leqslant \dfrac{\pi }{2}
Similarly, π2sin1yπ2 - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}y \leqslant \dfrac{\pi }{2}
The range of cos1θ{\cos ^{ - 1}}\theta is [0,π]\left[ {0,\pi } \right]
Then, 0cos1zπ0 \leqslant {\cos ^{ - 1}}z \leqslant \pi
We want to make the sum sin1x+sin1y+cos1z=2π{\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\cos ^{ - 1}}z = 2\pi
Thus, we will have to extreme values of all the terms to get the required sum.
That is,
sin1x=π2{\sin ^{ - 1}}x = \dfrac{\pi }{2}
sin1y=π2{\sin ^{ - 1}}y = \dfrac{\pi }{2}
cos1z=π{\cos ^{ - 1}}z = \pi
Now, we write the corresponding values of x,y,zx,y,z
When sin1x=π2{\sin ^{ - 1}}x = \dfrac{\pi }{2}, we know that sinπ2=x\sin \dfrac{\pi }{2} = x
Then, x=1x = 1
Similarly, y=1y = 1
Now,
cos1z=π z=cosπ z=1  {\cos ^{ - 1}}z = \pi \\\ \Rightarrow z = \cos \pi \\\ \Rightarrow z = - 1 \\\
Therefore, the possible triplet is (1,1,1)\left( {1,1, - 1} \right) and there is only one such triplet possible.
Hence, option A is correct.

Note: One must remember the range for given trigonometric functions in order to avoid errors. The inverse trigonometry functions reverse the operations that the sine, cosine tangent, secant, cosecant, and cotangent perform. Here, many students make mistakes by not considering the range of the inverse trigonometric functions.