Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The number of the solutions of the equation 52x1+5x+1=250,{{5}^{2x-1}}+{{5}^{x+1}}=250, is/are

A

00

B

11

C

22

D

infinitelymanyinfinitely \,many

Answer

11

Explanation

Solution

Given equation is 52x1+5x+1=250{{5}^{2x-1}}+{{5}^{x+1}}=250
\Rightarrow 52x.51+5x.5=250{{5}^{2x}}{{.5}^{-1}}+{{5}^{x}}.5=250
\Rightarrow (5x)25+5x.5=250\frac{{{({{5}^{x}})}^{2}}}{5}+{{5}^{x}}.5=250 ?.(i) Let 5x=t{{5}^{x}}=t Then E (i) becomes t25+t.5=250\frac{{{t}^{2}}}{5}+t.5=250
\Rightarrow t2+25t=250×5{{t}^{2}}+25t=250\times 5
\Rightarrow t2+25t1250=0{{t}^{2}}+25t-1250=0
\therefore t=25±(25)24×1×(1250)2×1t=\frac{-25\pm \sqrt{{{(25)}^{2}}-4\times 1\times (-1250)}}{2\times 1}
\Rightarrow t=25±625+50002t=\frac{-25\pm \sqrt{625+5000}}{2}
\Rightarrow t=25±56252t=\frac{-25\pm \sqrt{5625}}{2}
\Rightarrow t=25±752t=\frac{-25\pm 75}{2} On taking +ve+ve sign, we get t=5x=25+752=502t={{5}^{x}}=\frac{-25+75}{2}=\frac{50}{2}
\Rightarrow 5x=25{{5}^{x}}=25
\Rightarrow 5x=52{{5}^{x}}={{5}^{2}}
\Rightarrow x=2x=2 On taking ve-ve sign, we get t=5x=25752t={{5}^{x}}=\frac{-25-75}{2} 5x=1002{{5}^{x}}=\frac{-100}{2} 5x=50{{5}^{x}}=-50 Cannot express in terms of power of 5. Hence number of solution of given equation is 1.