Solveeit Logo

Question

Mathematics Question on argand plane

The number of the distinct real roots of the equation sinxcosxcosx cosxsinxcosx cosxcosxsinx=0\begin{vmatrix}\sin x&\cos x&\cos x\\\ \cos x&\sin x&\cos x\\\ \cos x&\cos x&\sin x\end{vmatrix} = 0 , in the interval π4xπ4 - \frac{\pi}{4} \le x \le \frac{\pi}{4} is

A

4

B

3

C

1

D

2

Answer

1

Explanation

Solution

We have, sinxcosxcosx cosxsinxcosx cosxcosxsinx=0\begin{vmatrix} \sin\, x &\cos\, x & \cos\, x\\\ \cos\, x & \sin\, x &\cos\,x\\\ \cos\, x &\cos\,x &\sin\, x\end{vmatrix}=0
Applying C1C1+C2+C3C_{1} \to C_{1}+C_{2}+C_{3}, we get
2cosx+sinxcosxcosx 2cosx+sinxsinxcosx 2cosx+sinxcosxsinx=0\begin{vmatrix}2\, \cos\, x + \sin\, x &\cos\, x &\cos\, x\\\ 2\, \cos\, x + \sin\, x &\sin\, x & \cos\, x\\\ 2\, \cos\, x +\sin\, x &\cos\, x &\sin\,x\end{vmatrix}=0
Taking (2cosx+sinx)(2\, \cos\, x + \sin\, x) common from C1C_1, we get
(2cosx+sinx)1cosxcosx 1sinxcosx 1cosxsinx=0\left(2\, \cos\, x + \sin\,x\right)\begin{vmatrix}1& \cos\, x &\cos\,x\\\ 1&\sin\, x & \cos\,x\\\ 1&\cos\, x &\sin\,x\end{vmatrix}=0
Applying R2R2R1R_{2} \to R_{2} -R_{1} and R3R1R_{3} \to R_{1}, we get
(2cosx+sinx)1cosxcosx 0sinxcosx0 00sinxcosx=0\left(2\, \cos\, x +\sin\,x\right)\begin{vmatrix}1&\cos\, x &\cos\,x\\\ 0&\sin\,x-\cos\,x&0\\\ 0&0&\sin\,x-\cos\,x\end{vmatrix}=0
Expanding along C1C_{1}, we get
(2cosx+sinx)[1(sinxcosx)2]=0\left(2\, \cos \,x + \sin \,x\right) \left[1 \left(\sin\, x - \cos \,x\right)^{2}\right] = 0
(2cosx+sinx)(sinxcosx)2=0\Rightarrow \left(2 \,\cos \,x + \sin \,x\right) \left(\sin \,x - \cos \,x\right)^{2}=0
Now, if 2cosx+sinx=02\cos\,x + \sin\,x = 0, then 2cosx=sinx2\,\cos \,x = - \sin\, x
tanx=2\Rightarrow \tan\,x=-2
But here π4xπ4-\frac{\pi}{4} \le x \le \frac{\pi}{4}, we have
1tanx1-1 \le \tan\,x \le 1, so no solution possible.
or if (sinxcosx)2=0\left(\sin\, x-\cos\,x\right)^{2}=0, then sinx=cosx\sin\,x =\cos\,x
tanx=1=tanπ4\Rightarrow \tan\,x=1=\tan \frac{\pi}{4}
x=π4\Rightarrow x=\frac{\pi}{4}
So, only one distinct real root exist.