Question
Mathematics Question on argand plane
The number of the distinct real roots of the equation sinx cosx cosxcosxsinxcosxcosxcosxsinx=0 , in the interval −4π≤x≤4π is
4
3
1
2
1
Solution
We have, sinx cosx cosxcosxsinxcosxcosxcosxsinx=0
Applying C1→C1+C2+C3, we get
2cosx+sinx 2cosx+sinx 2cosx+sinxcosxsinxcosxcosxcosxsinx=0
Taking (2cosx+sinx) common from C1, we get
(2cosx+sinx)1 1 1cosxsinxcosxcosxcosxsinx=0
Applying R2→R2−R1 and R3→R1, we get
(2cosx+sinx)1 0 0cosxsinx−cosx0cosx0sinx−cosx=0
Expanding along C1, we get
(2cosx+sinx)[1(sinx−cosx)2]=0
⇒(2cosx+sinx)(sinx−cosx)2=0
Now, if 2cosx+sinx=0, then 2cosx=−sinx
⇒tanx=−2
But here −4π≤x≤4π, we have
−1≤tanx≤1, so no solution possible.
or if (sinx−cosx)2=0, then sinx=cosx
⇒tanx=1=tan4π
⇒x=4π
So, only one distinct real root exist.