Solveeit Logo

Question

Question: The number of terms of the A.P. 3,7,11,15...to be taken so that the sum is 406 is....

The number of terms of the A.P. 3,7,11,15...to be taken so that the sum is 406 is.

A

5

B

10

C

12

D

14

Answer

14

Explanation

Solution

S=n2[2a+(n1)d]S = \frac { n } { 2 } [ 2 a + ( n - 1 ) d ]

406=n2[6+(n1)4]406 = \frac { n } { 2 } [ 6 + ( n - 1 ) 4 ]812=n[6+4n4]812 = n [ 6 + 4 n - 4 ]

812=2n+4n2812 = 2 n + 4 n ^ { 2 }406=2n2+n406 = 2 n ^ { 2 } + n

2n2+n406=02 n ^ { 2 } + n - 406 = 0

n=1±1+4.2.4062.2n = \frac { - 1 \pm \sqrt { 1 + 4.2 .406 } } { 2.2 } =1±32494= \frac { - 1 \pm \sqrt { 3249 } } { 4 } =1±574= \frac { - 1 \pm 57 } { 4 }

Taking (+) sign, n=1+574=14n = \frac { - 1 + 57 } { 4 } = 14.