Solveeit Logo

Question

Question: The number of terms in \(\left( x^{3} + 1 + \frac{1}{x^{3}} \right)^{100}\)is –...

The number of terms in (x3+1+1x3)100\left( x^{3} + 1 + \frac{1}{x^{3}} \right)^{100}is –

A

300

B

200

C

100

D

201

Answer

201

Explanation

Solution

[1+(x3+1x3)]100\left\lbrack 1 + \left( x^{3} + \frac{1}{x^{3}} \right) \right\rbrack^{100}1 + 100C1{ } ^ { 100 } \mathrm { C } _ { 1 } (x3+1x3)\left( x^{3} + \frac{1}{x^{3}} \right)

+100C2{ } ^ { 100 } \mathrm { C } _ { 2 } (x3+1x3)2\left( x^{3} + \frac{1}{x^{3}} \right)^{2}+…….+ 100C100{ } ^ { 100 } \mathrm { C } _ { 100 } (x3+1x3)100\left( x^{3} + \frac{1}{x^{3}} \right)^{100}

= (1 + r) + a1 x3 + a2x6 +…… + a100(x3)100 + b11x3\frac{1}{x^{3}}+ …….+b100(1x3)100\left( \frac{1}{x^{3}} \right)^{100}

all other terms obtained by combination of x3 and 1x3\frac{1}{x^{3}} well get converted into a term involving x3 or 1x3\frac{1}{x^{3}} and hence it will be present among above terms

So number of terms = 1 + 100 + 100 = 201