Solveeit Logo

Question

Mathematics Question on Set Theory

The number of symmetric relations defined on the set {1, 2, 3, 4} which are not reflexive is _____.

Answer

Define symmetric relations: A relation RR is symmetric if (a,b)R    (b,a)R(a, b) \in R \implies (b, a) \in R. A relation is reflexive if (a,a)R(a, a) \in R for all aa.

Count total relations:

Total relations=2n2 for n=4.\text{Total relations} = 2^{n^2} \text{ for } n = 4.

Total relations=242=216=65536.\text{Total relations} = 2^{4^2} = 2^{16} = 65536.

Count reflexive relations: Reflexive pairs: (1,1),(2,2),(3,3),(4,4)(1, 1), (2, 2), (3, 3), (4, 4) (4 pairs). Remaining symmetric pairs: (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) (6 pairs).

Total reflexive relations=26=64.\text{Total reflexive relations} = 2^6 = 64.

Count symmetric relations:

Symmetric relations=2(n2)+n=26+4=210=1024.\text{Symmetric relations} = 2^{\binom{n}{2} + n} = 2^{6 + 4} = 2^{10} = 1024.

Non-reflexive symmetric relations:

Non-reflexive symmetric relations=Total symmetric relationsReflexive symmetric relations=102464=960.\text{Non-reflexive symmetric relations} = \text{Total symmetric relations} - \text{Reflexive symmetric relations} = 1024 - 64 = 960.

Thus, the answer is: 960