Solveeit Logo

Question

Question: The number of straight lines that are equally inclined to the three dimensional co-ordinate axes, is...

The number of straight lines that are equally inclined to the three dimensional co-ordinate axes, is

A

2

B

4

C

6

D

8

Answer

4

Explanation

Solution

Since α=β=γcos2α+cos2α+cos2α=1\alpha = \beta = \gamma \Rightarrow \cos ^ { 2 } \alpha + \cos ^ { 2 } \alpha + \cos ^ { 2 } \alpha = 1

α=cos1(±13)\Rightarrow \alpha = \cos ^ { - 1 } \left( \pm \frac { 1 } { \sqrt { 3 } } \right)

So, there are four lines whose direction cosines are

(13,13,13),(13,13,13),(13,13,13)\left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right) , \left( \frac { - 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right) , \left( \frac { 1 } { \sqrt { 3 } } , \frac { - 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right)

(13,13,13)\left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { - 1 } { \sqrt { 3 } } \right).