Solveeit Logo

Question

Question: The number of solutions of the system of equations: $2\sin^2 x + \sin^2 2x = 2$ In [0, 4$\pi$] is __...

The number of solutions of the system of equations: 2sin2x+sin22x=22\sin^2 x + \sin^2 2x = 2 In [0, 4π\pi] is ______.

Answer

12

Explanation

Solution

We start with

2sin2x+sin22x=2.2\sin^2x+\sin^2 2x=2.

Using the identity sin22x=4sin2xcos2x\sin^2 2x = 4\sin^2x\cos^2x, the equation becomes

2sin2x+4sin2xcos2x=2.2\sin^2x+4\sin^2x\cos^2x=2.

Dividing by 2:

sin2x+2sin2xcos2x=1.\sin^2x+2\sin^2x\cos^2x=1.

Replace cos2x\cos^2x with 1sin2x1-\sin^2x:

sin2x+2sin2x(1sin2x)=1.\sin^2x + 2\sin^2x(1-\sin^2x)=1.

Let u=sin2xu=\sin^2x. Then:

u+2u(1u)=1u+2u2u2=1,u+2u(1-u)=1 \quad\Rightarrow\quad u+2u-2u^2=1, 3u2u2=12u23u+1=0.3u-2u^2=1 \quad\Rightarrow\quad 2u^2-3u+1=0.

Factorizing:

(2u1)(u1)=0.(2u-1)(u-1)=0.

Thus,

u=12oru=1.u=\frac{1}{2}\quad \text{or}\quad u=1.

Returning to sin2x\sin^2x:

  • For sin2x=12\sin^2x=\frac{1}{2}: sinx=±12\sin x=\pm \frac{1}{\sqrt{2}}.
  • For sin2x=1\sin^2x=1: sinx=±1\sin x=\pm1.

Counting solutions in [0,4π][0,4\pi]:

  • sin2x=12\sin^2x=\frac{1}{2}: In one period [0,2π][0,2\pi] there are 4 solutions: π4,3π4,5π4,7π4\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}. Over [0,4π][0,4\pi] there are 4×2=84 \times 2 = 8 solutions.
  • sinx=±1\sin x=\pm1: In [0,2π][0,2\pi] there are 2 solutions: π2\frac{\pi}{2} and 3π2\frac{3\pi}{2}. Over [0,4π][0,4\pi] there are 2×2=42 \times 2 = 4 solutions.

Total solutions: 8+4=128+4=12.


Explanation (minimal): Substitute sin22x=4sin2xcos2x\sin^2 2x=4\sin^2x\cos^2x, express cos2x\cos^2x in terms of sin2x\sin^2x, solve the quadratic 2u23u+1=02u^2-3u+1=0 to get u=12u=\frac{1}{2} and 1, then count solutions for sin2x=12\sin^2x=\frac{1}{2} and sin2x=1\sin^2x=1 in [0,4π][0,4\pi].