Solveeit Logo

Question

Question: The number of solutions of the pair of equations \(2si{n^2}\theta - cos2\theta = 0\) and \(2co{s^2}\...

The number of solutions of the pair of equations 2sin2θcos2θ=02si{n^2}\theta - cos2\theta = 0 and 2cos2θ3sinθ=02co{s^2}\theta - 3\sin \theta = 0 in the interval [0,2π]\left[ {0,2\pi } \right] is:
A.00
B.11
C.22
D.44

Explanation

Solution

We will use the concept of finding the general solutions of trigonometric functions to find the possible values of θ\theta . The solution generalised using the periodicity of trigonometric functions is called the general solution of the trigonometric equation.

Formula used: Here we will use the general formula for cosθ\cos \theta and sinθ\sin \theta as shown below;
If sinθ=sinα\sin \theta = \sin \alpha then θ=nπ+(1)nα\theta = n\pi + {\left( { - 1} \right)^n}\alpha
if cosθ=cosα\cos \theta = \cos \alpha then θ=2nπ±α\theta = 2n\pi \pm \alpha
In both the above equations nIn \in I where II is the set of integers .
We will also use the trigonometric identities cos2θ=12sin2θcos2\theta = 1 - 2si{n^2}\theta and 1=cos2θ+sin2θ1 = {\cos ^2}\theta + si{n^2}\theta .

Complete step-by-step answer:
The given pair of equations are 2sin2θcos2θ=02si{n^2}\theta - cos2\theta = 0 and 2cos2θ3sinθ=02co{s^2}\theta - 3\sin \theta = 0.
Let’s simplify the first equation.
2sin2θcos2θ=02si{n^2}\theta - cos2\theta = 0
Use the identity cos2θ=12sin2θcos2\theta = 1 - 2si{n^2}\theta , then
2sin2θ(12sin2θ)=0\Rightarrow 2si{n^2}\theta - \left( {1 - 2si{n^2}\theta } \right) = 0
Simplify above equation,
4sin2θ=1\Rightarrow 4{\sin ^2}\theta = 1
Simplify further to get the value of sinθ\sin \theta .
sin2θ=14\Rightarrow {\sin ^2}\theta = \dfrac{1}{4}
sinθ=±12\Rightarrow \sin \theta = \pm \dfrac{1}{2}
So now, we have sinθ=12\sin \theta = \dfrac{1}{2} or sinθ=12\sin \theta = - \dfrac{1}{2}.
Therefore, the value of θ\theta could be as below,
θ=π6,  5π6,  7π6,  11π6\theta = \dfrac{\pi }{6},\;\dfrac{{5\pi }}{6},\;\dfrac{{7\pi }}{6},\;\dfrac{{11\pi }}{6}
Now, simplify the second equation.
2cos2θ3sinθ=02co{s^2}\theta - 3\sin \theta = 0
Use the identity cos2θ=1sin2θco{s^2}\theta = 1 - si{n^2}\theta .
2(1sin2θ)3sinθ=0\Rightarrow 2\left( {1 - si{n^2}\theta } \right) - 3sin\theta = 0
Now, we will simplify the above equation.
22sin2θ3sinθ=0\Rightarrow 2 - 2si{n^2}\theta - 3sin\theta = 0
2sin2θ+3sinθ2=0\Rightarrow 2si{n^2}\theta + 3sin\theta - 2 = 0
Now, factorise the above equation
2sin2θ+4sinθsinθ2=0\Rightarrow 2si{n^2}\theta + 4sin\theta - sin\theta - 2 = 0
Take out the common factors.
2sinθ(sinθ+2)1(sinθ+2)=0\Rightarrow 2sin\theta \left( {sin\theta + 2} \right) - 1\left( {sin\theta + 2} \right) = 0
(2sinθ1)(sinθ+2)=0\Rightarrow \left( {2sin\theta - 1} \right)\left( {sin\theta + 2} \right) = 0
The above equation implies that either (2sinθ1)=0\left( {2sin\theta - 1} \right) = 0 or sinθ+2=0sin\theta + 2 = 0.
2sinθ=12sin\theta = 1or sinθ=2sin\theta = - 2.
Since sinθ=2sin\theta = - 2 is not possible because 1sinθ1 - 1 \leqslant sin\theta \leqslant 1.
So, sinθ=12sin\theta = \dfrac{1}{2}
Therefore, the value of θ\theta for the second equation is
θ=π6,5π6\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6}
Now check the common values of θ\theta for the solution of a given pair of equations.
As θ=π6,5π6\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} is a common solution for both the equations, thus we have only two values in common.
So, option (C) is correct answer

Note: We can also use the formula cos2θ=cos2θsin2θcos2\theta = {\cos ^2}\theta - si{n^2}\theta , cos2θ=2cos2θ1cos2\theta = 2{\cos ^2}\theta - 1 to simplify the given equations. The question can also be solved using the trigonometric table where we will be using the values of different trigonometric angles.