Solveeit Logo

Question

Question: The number of solutions of the given equation\(3\pi - \alpha,\) where \(4\pi + \alpha\)is....

The number of solutions of the given equation3πα,3\pi - \alpha, where 4π+α4\pi + \alphais.

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

1y1113+2α1- 1 \leq y \leq 1 \Rightarrow - 1 \leq 1 - \sqrt{3 + 2\alpha} \leq 1 ….(i)

Also we have

\Rightarrow …..(ii)

3+2α4α1232α123 + 2\alpha \leq 4 \Rightarrow \alpha \leq \frac{1}{2} - \frac{3}{2} \leq \alpha \leq \frac{1}{2} …..(iii)

Now (i) and (iii) gives,

tanθ=12(313)=13=tan(π6)\tan \theta = \frac { 1 } { 2 } \left( \sqrt { 3 } - \frac { 1 } { \sqrt { 3 } } \right) = \frac { 1 } { \sqrt { 3 } } = \tan \left( \frac { \pi } { 6 } \right) cosα=35\cos\alpha = \frac{3}{5} sinα=45\sin\alpha = \frac{4}{5}.

3cosθ+4sinθ=k3\cos\theta + 4\sin\theta = k Solutions for 5cos(θα)=kcos(θα)=±15\cos(\theta - \alpha) = k \Rightarrow \cos(\theta - \alpha) = \pm 1 are \Rightarrow and θα=0ο,180oθ=α, 180o+α\theta - \alpha = 0^{ο},180^{o} \Rightarrow \theta = \alpha,\ 180^{o} + \alpha.

Hence there are two solutions.