Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The number of solutions of the equation z2+zˉ=0z^2+\bar{z}=0, where zCz \in C are

A

1

B

4

C

5

D

6

Answer

4

Explanation

Solution

The correct option is(B): 4.

Let z=x+iyz = x + iy
z2=x2y2+2ixy\Rightarrow z^{2} =x^{2} -y^{2} + 2ixy
z2+zˉ=0\because z^{2} + \bar{z} = 0 (given)
x2y2+2ixy+xiy=0\therefore x^{2} -y^{2} + 2ixy+x-iy=0
(x2+xy2)+i(2.xyy)=0\Rightarrow \left(x^{2} + x - y^{2}\right) + i \left(2.xy - y\right) = 0
Equating the real and imaginary parts, we get
x2+xy2=0(i)x^{2} +x - y^{2} =0\,\,\,\,\,\dots(i)
and 2xyy=0(ii)2xy - y = 0\,\,\,\,\,\,\dots(ii)
By E(ii), we gety
(2x1)=0\left(2x - 1\right) = 0
y=0\Rightarrow y=0 or x=12x = \frac{1}{2}

so at y=0,

x2+x=0

x=0,-1.

again for x=12x = \frac{1}{2} from 2 we get

y2= x=1yx = \frac{-1}{y}+12 \frac{1}{2}=34 \frac{3}{4}

y=+22y =\frac{+√2}{2}

therefor the solution for the given equation are: (a,y), are (0,0), (-1,0), (±32\frac{√3}{2}. 12\frac{1}{2}.)

hence correct answer is 4.