Question
Question: the number of solutions of the equation \[{\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan...
the number of solutions of the equation tan−1(2x+11)+tan−1(4x+11)=tan−1(x22) is
(A) 0
(B) 1
(C) 2
(D) 3
Solution
here, we will be using the formula for the sum of two inverse tangent functions.
Complete step-by-step answer:
Given, the equation tan−1(2x+11)+tan−1(4x+11)=tan−1(x22)
The sum of two inverse tangent functions tan−1a andtan−1b is given by tan−1a+tan−1b=tan−1(1−aba+b)
Now if we apply this formula to the given equation, then the equation is given by
tan−11−2x+11×4x+112x+11+4x+11=tan−1(x22)
⇒tan−1(2x+1)(4x+1)(2x+1)(4x+1)−1(2x+1)(4x+1)4x+1+2x+1=tan−1(x22)
⇒tan−1(8x2+4x+2x+1−16x+2)=tan−1(x22)
⇒tan−1(8x2+6x6x+2)=tan−1(x22)
⇒8x2+6x6x+2=x22
⇒(6x+2)x2=2(8x2+6x)
⇒6x3+2x2=16x2+12x
⇒6x3−14x2−12x=0
⇒2x(3x2−7x−6)=0
⇒2x(3x2−9x+2x−6)=0
⇒2x(3x(x−3)+2(x−3))=0
⇒2x(3x+2)(x−3)=0
⇒x=0,x=3−2,x=3
⇒ the given equation has 3 solutions x=0,x=3−2 and x=3
Therefore, (D) 3 is the required solution.
Note: these types of questions always require the formula for sum of two inverse tangent functions