Solveeit Logo

Question

Question: The number of solutions of the equation sin<sup>3</sup>x cosx+ sin<sup>2</sup>x cos<sup>2</sup>x+sin...

The number of solutions of the equation sin3x cosx+ sin2x cos2x+sinxcos3x =1 in the interval [0, 2π] is

A

0

B

2

C

3

D

Infinite

Answer

0

Explanation

Solution

Here sin3x cosx + sin2x cos2 x + sinx cos3 x =1 ⇒ sinx

cosx ( sin2x + sinx cosx+ cos2 x)=1 ⇒ sin2x2(1+sin2x2)\frac { \sin 2 x } { 2 } \left( 1 + \frac { \sin 2 x } { 2 } \right)

= 1 ⇒ sin2x(2+ sin2x) = 4

⇒ sin22x + 2 sin2x -4 = 0

⇒ sin2x = 2±4+162\frac { - 2 \pm \sqrt { 4 + 16 } } { 2 } ⇒ sin2x = -1 ± 5\sqrt { 5 }

This is not possible .

( since –1 ≤ sin2x ≤ 1)

Hence the given equation has no solution.