Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The number of solutions of the equation sinxcos3x=sin3xcos5x\sin \,x\,\,\cos \,\,3x=\sin \,3x\,\,\cos \,5x in [0,π2]\left[ 0,\frac{\pi }{2} \right] is

A

33

B

44

C

55

D

66

Answer

55

Explanation

Solution

Given equation is sinxcos3x=sin3xcos5x\sin x\cos 3x=\sin 3x\,\cos \,5x
\Rightarrow 2sinxcos3x2sin3xcos5x=02\sin x\,\cos \,3x-2\sin 3x\,cos5x=0
\Rightarrow sin(3x+x)sin(3xx)sin(3x+5x)\sin (3x+x)-\sin (3x-x)-\sin (3x+5x)
+sin(5x3x)=0+\sin (5x-3x)=0
\Rightarrow sin4xsin2xsin8x+sin2x=0\sin 4x-\sin 2x-\sin 8x+\sin 2x=0
\Rightarrow sin4xsin8x=0\sin 4x-\sin 8x=0
\Rightarrow 2cos(4x+8x2)sin(8x4x2)=02\cos \left( \frac{4x+8x}{2} \right)\sin \left( \frac{8x-4x}{2} \right)=0
\Rightarrow 2cos6xsin2x=02\cos \,6x\,\sin \,2x=0
\Rightarrow cos6x=0\cos \,\,6x=0 or sin2x=0\sin \,2x=0
\Rightarrow 6x=(2n+1)π26x=(2n+1)\frac{\pi }{2} or x=nπ2x=\frac{n\pi }{2}
\Rightarrow x=(2n+1)π12x=(2n+1)\frac{\pi }{12} or x=nπ2x=\frac{n\pi }{2}
\Rightarrow x=0,π2,π12,3π12,5π12[0,π2]x=0,\,\frac{\pi }{2},\frac{\pi }{12},\frac{3\pi }{12},\frac{5\pi }{12}\in \left[ 0,\frac{\pi }{2} \right]
\therefore Number of solutions is 5.