Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The number of solutions of the equation sin2x+2sinxcosx1=0\sin \, 2x + 2 \, \sin \, x - \cos \, x - 1 = 0 in the range 0x2π0 \leq x \leq 2 \pi is

A

3

B

4

C

2

D

None of these

Answer

3

Explanation

Solution

We have, sin2x+2sinxcosx1=0\sin\,2x + 2\sin\,x - \cos\,x - 1 = 0
2sinxcosx+2sinxcosx1=0\Rightarrow 2\sin\,x\, \cos\,x + 2\sin\,x - \cos\,x - 1 = 0
2sinx(cosx+1)1(cosx+1)=0\Rightarrow 2\sin\,x(\cos\,x + 1) -1 (\cos\,x + 1) = 0
(cosx+1)(2sinx1)=0\Rightarrow (\cos\,x + 1)(2\sin\,x - 1) = 0
cosx+1=0\Rightarrow \cos\,x + 1 = 0 or 2sinx1=02\sin\,x - 1 = 0
cosx=1\Rightarrow \cos\,x= -1 or sinx=12\sin\,x=\frac{1}{2}
cosx=cosπ\Rightarrow \cos\, x= \cos\,\pi
or sinx=sinπ6,sin5π6[x[0,2π]]\sin\, x=\sin \frac{\pi}{6}, \sin \frac{5\pi}{6} \left[\therefore x \in\left[0, 2\pi\right]\right]
x=π\Rightarrow x=\pi or x=π6,5π6x=\frac{\pi}{6}, \frac{5\pi}{6}
x=π,π6,5π6\therefore x=\pi, \frac{\pi}{6}, \frac{5\pi}{6}
Hence, number of solutions are 33.