Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The number of solutions of the equation sin  (ex)=5x+5x\sin \; (e^{x}) = 5^x + 5^{-x}, is

A

0

B

1

C

2

D

infinitely many

Answer

0

Explanation

Solution

We have, the given equation as
sin(ex)=5x+5x\sin \left(e^{x}\right)=5^{x}+5^{-x} ...(i)
Let 5x=t5^{x}=t, then E (i), reduces to
sin(ex)=t+1t\sin \left(e^{x}\right)=t+\frac{1}{t}
sin(ex)=t+1t2+2\Rightarrow \sin \left(e^{x}\right)=t+\frac{1}{t}-2+2
sin(ex)=(t1t)2+2\Rightarrow \sin \left(e^{x}\right)=\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{2}+2
\left\\{\because 5^{x}>0, \therefore \sqrt{5^{x}}=\sqrt{t} \text { exists }\right\\}
sin(ex)2\Rightarrow \sin \left(e^{x}\right) \geq 2
which is not possible as sinθ1\sin \theta \leq 1.
Thus, given equation has no solution.