Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The number of solutions of the equation cotx=cotx+1sinx,(0x2π)\left|cot\,x\right|=cot\,x+\frac{1}{sin\,x}, \left(0 \le x \le 2\pi\right) is

A

00

B

11

C

22

D

33

Answer

11

Explanation

Solution

(i) When x[0,π2](π,3π2)x \in\left[0, \frac{\pi}{2}\right] \cup \left( \pi , \frac{3 \pi}{2} \right) then cotx0\cot \, x \geq 0
cotx=cotx+1sinx1sinx=0\Rightarrow \:\: \cot \, x = \cot \, x + \frac{1}{\sin \, x} \:\:\: \Rightarrow \frac{1}{\sin \, x} = 0
\Rightarrow No solution exist
(ii) When x(π2,π)(3π2,2π)x \in\left(\frac{\pi}{2}, \pi \right) \cup \left( \frac{3 \pi}{2} , 2\pi \right) then cotx<0\cot \, x < 0
cotx=cotx+1sinx\therefore \:\: - \cot \, x = \cot \, x + \frac{1}{\sin \, x}
2cotx=1sinx\Rightarrow \:\: -2 \, \cot \, x = \frac{1}{\sin \, x}
cosx=12x=2π3\Rightarrow \:\: \cos \, x = \frac{-1}{2 } \:\: \Rightarrow \: x = \frac{2 \pi}{3}