Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

The number of solutions of the equation 12(x3+1)=(2x1) \dfrac{1}{2}(x^3+1)=(2x-1)^{⅓} is

A

00

B

66

C

99

D

E

33

Answer

99

Explanation

Solution

12(x3+1)=(2x1)\dfrac{1}{2}(x^3+1)=(2x-1)^{⅓}

⇒$$[\dfrac{1}{2}(x^3+1)]^{3}=2x-1

[18(x9+3x6+3x3+1)]=2x1⇒[\dfrac{1}{8}(x^9+3x^6+3x^3+1)]=2x-1

[18(x9+3x6+3x3+1)]=2x1⇒[\dfrac{1}{8}(x^9+3x^6+3x^3+1)]=2x-1

[18(x9+3x6+3x32x+9)=0⇒[\dfrac{1}{8}(x^9+3x^6+3x^3-2x+9)=0

Hence this polynomial of degree 99 has 99 solutions.(_Ans.)