Solveeit Logo

Question

Question: The number of solutions of the equation \|cotx\| = cotx+\(\frac { 1 } { \sin x }\) ( 0 ≤ x ≤2π) is...

The number of solutions of the equation

|cotx| = cotx+1sinx\frac { 1 } { \sin x } ( 0 ≤ x ≤2π) is

A

0

B

1

C

2

D

3

Answer

1

Explanation

Solution

If cotx > 0 , then 1sinx\frac { 1 } { \sin x } = 0 which is not possible.

Now if cotx < 0, then – cotx = cot x + 1sinx\frac { 1 } { \sin x }

2cosx+1sinx=0\frac { 2 \cos x + 1 } { \sin x } = 0 ⇒ cosx = -1/2

⇒ x = 2nπ ±2π3\frac { 2 \pi } { 3 } n ∈ I and 0 ≤ x ≤ 2π , also cot x < 0

⇒ x =2π3\frac { 2 \pi } { 3 }.