Question
Question: The number of solutions of the equation \|cotx\| = cotx+\(\frac { 1 } { \sin x }\) ( 0 ≤ x ≤2π) is...
The number of solutions of the equation
|cotx| = cotx+sinx1 ( 0 ≤ x ≤2π) is
A
0
B
1
C
2
D
3
Answer
1
Explanation
Solution
If cotx > 0 , then sinx1 = 0 which is not possible.
Now if cotx < 0, then – cotx = cot x + sinx1
⇒ sinx2cosx+1=0 ⇒ cosx = -1/2
⇒ x = 2nπ ±32π n ∈ I and 0 ≤ x ≤ 2π , also cot x < 0
⇒ x =32π.