Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The number of solutions of the equation cos(x+π3)cos(π3x)=14cos22x,x[3π,3π]cos \bigg(x+\frac{π}{3}\bigg)cos\bigg(\frac{π}{3-x}\bigg)=\frac{1}{4}cos^22x,x ∈ [-3π, 3π] is:

A

8

B

5

C

6

D

7

Answer

7

Explanation

Solution

cos(x+π3)cos(π3x)=14cos22x,x[3π,3π]cos \bigg(x+\frac{π}{3}\bigg)cos\bigg(\frac{π}{3-x}\bigg)=\frac{1}{4}cos^22x,x ∈ [-3π, 3π]

cos2x+cos2π3=12cos22x⇒ cos2x + cos \frac{2π}{3} = \frac{1}{2} cos^22x

cos22x2cos2x1=0⇒ cos^22x - 2cos^2x - 1 = 0

cos2x=1⇒ cos2x = 1

Therefore, x can have 3π,2π,π,0,π,2π,3π-3π, -2π, -π,0,π,2π,3π [Seven different results]

Hence, the correct option is (D): 77