Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The number of solutions of sinx+sin3x+sin5x=0\sin \, x + \sin \, 3x + \sin \, 5x = 0 in the interval [π2,3π2]\left[\frac{\pi}{2} , 3 \frac{\pi}{2}\right] is

A

2

B

3

C

4

D

5

Answer

3

Explanation

Solution

We have,
sinx+sin3x+sin5x=0\sin x+\sin 3 x+\sin 5 x=0
sinx+sin5x+sin3x=0\Rightarrow \sin x+\sin 5 x+\sin 3 x=0
2sin3xcos2x+sin3x=0\Rightarrow 2 \sin 3 x \cos 2 x+\sin 3 x=0
sin3x(2cos2x+1)=0\Rightarrow \sin 3 x(2 \cos 2 x+1)=0
sin3x=0\Rightarrow \sin 3 x=0 or cos2x=12=cos2π3\cos 2 x=-\frac{1}{2}=\cos \frac{2 \pi}{3}
3x=nπ or 2n=2nπ±2π3\Rightarrow 3 x=n \pi \text { or } 2 n=2 n \pi \pm \frac{2 \pi}{3}
x=nπ3\Rightarrow x=\frac{n \pi}{3} or x=nπ±π3 x=n \pi \pm \frac{\pi}{3}
But, it is given that
x[π2,3π2]x \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]
x=2π3,π,4π3\therefore x=\frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}
\therefore Number of solutions is 3 .