Question
Mathematics Question on General and Particular Solutions of a Differential Equation
The number of solutions of sin3x=cos2x, in the interval (2π,π) is :
A
1
B
2
C
3
D
4
Answer
1
Explanation
Solution
Given: sin3x=cos2x
⇒3sinx−4sin3x=1−2sin2x
⇒4sin3x−2sin2x−3sinx+1=0
⇒4sin2x(sinx−1)+2sinx(sinx−1)−(sinx−1)=0
⇒(sinx−1)(4sin2x+2sinx−1)
⇒sinx=1 or 4sin2x+2sinx−1=0
4sin2x+2sinx−1sinx=2.4−2±4+16
4sin2x+2sinx−1sinx=4−1±5
We know that, sinx>0∀x∈(π/2,π) and sinx=1
sinx=45−1
Therefore, number of solution is 1 .