Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The number of solutions of sin3x=cos2x\sin \, 3x = \cos \, 2x, in the interval (π2,π)\left( \frac{\pi}{2} , \pi \right) is :

A

1

B

2

C

3

D

4

Answer

1

Explanation

Solution

Given: sin3x=cos2x\sin 3 x=\cos 2 x
3sinx4sin3x=12sin2x\Rightarrow 3 \sin x-4 \sin ^{3} x=1-2 \sin ^{2} x
4sin3x2sin2x3sinx+1=0\Rightarrow 4 \sin ^{3} x-2 \sin ^{2} x-3 \sin x+1=0
4sin2x(sinx1)+2sinx(sinx1)(sinx1)=0\Rightarrow 4 \sin ^{2} x(\sin x-1)+2 \sin x(\sin x-1)-(\sin x-1)=0
(sinx1)(4sin2x+2sinx1)\Rightarrow (\sin x-1)\left(4 \sin ^{2} x+2 \sin x-1\right)
sinx=1\Rightarrow \sin x=1 or 4sin2x+2sinx1=04 \sin ^{2} x+2 \sin x-1=0
4sin2x+2sinx1sinx=2±4+162.44 \sin ^{2} x+2 \sin x-1 \sin x=\frac{-2 \pm \sqrt{4+16}}{2.4}
4sin2x+2sinx1sinx=1±544 \sin ^{2} x+2 \sin x-1 \sin x=\frac{-1 \pm \sqrt{5}}{4}
We know that, sinx>0x(π/2,π)\sin x>\,0 \forall x \in(\pi / 2, \pi) and sinx1\sin x \neq 1
sinx=514\sin x=\frac{\sqrt{5}-1}{4}
Therefore, number of solution is 1 .