Question
Mathematics Question on Trigonometric Equations
The number of solutions of sin2x+(2+2x−x2)sinx−3(x−1)2=0,where −π≤x≤π, is
Given the equation:
sin2x+(2+2x−x2)sinx−3(x−1)2=0.
Rearranging terms:
sin2x−(x2−2x−2)sinx−3(x−1)2=0.
Step 1: Identify Possible Roots Consider the quadratic equation in terms of sinx:
sin2x−(x2−2x−2)sinx−3(x−1)2=0.
Let:
y=sinx.
The equation becomes:
y2−(x2−2x−2)y−3(x−1)2=0.
Step 2: Apply Quadratic Formula Using the quadratic formula:
y=2(x2−2x−2)±(x2−2x−2)2+12(x−1)2.
Step 3: Check Valid Solutions For y=sinx to be a valid solution, we require:
−1≤y≤1.
This constraint eliminates extraneous roots and restricts the possible values of x within the interval −π≤x≤π.
Step 4: Evaluate Specific Cases - sinx=−3 (rejected, as sinx must lie within [−1,1]). - sinx=(x−1)2.
Solving sinx=(x−1)2 within the interval −π≤x≤π yields two valid solutions.
Therefore, the number of solutions is 2.