Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The number of solutions of sin2x+(2+2xx2)sinx3(x1)2=0,where πxπ,\sin^2 x + (2 + 2x - x^2) \sin x - 3(x - 1)^2 = 0, \quad \text{where } -\pi \leq x \leq \pi, is

Answer

Given the equation:

sin2x+(2+2xx2)sinx3(x1)2=0.\sin^2 x + (2 + 2x - x^2) \sin x - 3(x - 1)^2 = 0.

Rearranging terms:

sin2x(x22x2)sinx3(x1)2=0.\sin^2 x - (x^2 - 2x - 2) \sin x - 3(x - 1)^2 = 0.

Step 1: Identify Possible Roots Consider the quadratic equation in terms of sinx\sin x:

sin2x(x22x2)sinx3(x1)2=0.\sin^2 x - (x^2 - 2x - 2) \sin x - 3(x - 1)^2 = 0.

Let:

y=sinx.y = \sin x.

The equation becomes:

y2(x22x2)y3(x1)2=0.y^2 - (x^2 - 2x - 2)y - 3(x - 1)^2 = 0.

Step 2: Apply Quadratic Formula Using the quadratic formula:

y=(x22x2)±(x22x2)2+12(x1)22.y = \frac{(x^2 - 2x - 2) \pm \sqrt{(x^2 - 2x - 2)^2 + 12(x - 1)^2}}{2}.

Step 3: Check Valid Solutions For y=sinxy = \sin x to be a valid solution, we require:

1y1.-1 \leq y \leq 1.

This constraint eliminates extraneous roots and restricts the possible values of xx within the interval πxπ-\pi \leq x \leq \pi.

Step 4: Evaluate Specific Cases - sinx=3\sin x = -3 (rejected, as sinx\sin x must lie within [1,1][-1, 1]). - sinx=(x1)2\sin x = (x - 1)^2.

Solving sinx=(x1)2\sin x = (x - 1)^2 within the interval πxπ-\pi \leq x \leq \pi yields two valid solutions.

Therefore, the number of solutions is 2.