Solveeit Logo

Question

Question: The number of solutions of \(\sin^{- 1}x + \sin^{- 1}2x = \frac{\pi}{3}\) is...

The number of solutions of sin1x+sin12x=π3\sin^{- 1}x + \sin^{- 1}2x = \frac{\pi}{3} is

A

0

B

1

C

2

D

Infinitie

Answer

1

Explanation

Solution

sin12x=sin132sin1x=sin1[32.1x2x134]\sin^{- 1}2x = \sin^{- 1}\frac{\sqrt{3}}{2} - \sin^{- 1}x = \sin^{- 1}\left\lbrack \frac{\sqrt{3}}{2}.\sqrt{1 - x^{2}} - x\sqrt{1 - \frac{3}{4}} \right\rbrack

\therefore 2x=321x2x22x = \frac{\sqrt{3}}{2}\sqrt{1 - x^{2}} - \frac{x}{2}

(5x2)2=34(1x2)\therefore\left( \frac{5x}{2} \right)^{2} = \frac{3}{4}(1 - x^{2}) or 28x2=328x^{2} = 3 \Rightarrow x=328=1237x = \sqrt{\frac{3}{28}} = \frac{1}{2}\sqrt{\frac{3}{7}},

(not 1237- \frac{1}{2}\sqrt{\frac{3}{7}})