Solveeit Logo

Question

Question: The number of solutions of equation $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + sin\theta & 1 \\ 1 & 1 & ...

The number of solutions of equation

11111+sinθ1111+cotθ=0\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + sin\theta & 1 \\ 1 & 1 & 1 + cot\theta \end{vmatrix}=0 in θ[0,2π]\theta \in [0, 2\pi] is equal to

Answer

2

Explanation

Solution

We start with the determinant

11111+sinθ1111+cotθ=0.\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+\sin\theta & 1 \\ 1 & 1 & 1+\cot\theta \end{vmatrix}=0.

Subtract the first row from the second and third rows:

R2R2R1,R3R3R1.R_2 \to R_2-R_1,\quad R_3 \to R_3-R_1.

This gives

1110sinθ000cotθ=1(sinθcotθ)=sinθcotθ.\begin{vmatrix} 1 & 1 & 1 \\ 0 & \sin\theta & 0 \\ 0 & 0 & \cot\theta \end{vmatrix} = 1\cdot (\sin\theta \cdot \cot\theta) = \sin\theta\cot\theta.

Since cotθ=cosθsinθ\cot\theta=\frac{\cos\theta}{\sin\theta} (provided sinθ0\sin\theta\ne0), we have

sinθcotθ=cosθ.\sin\theta\cot\theta=\cos\theta.

So the equation becomes

cosθ=0.\cos\theta=0.

Within θ[0,2π]\theta\in[0,2\pi], the solutions are:

θ=π2andθ=3π2.\theta=\frac{\pi}{2}\quad \text{and}\quad \theta=\frac{3\pi}{2}.

Note: The values where sinθ=0\sin\theta=0 are not allowed since cotθ\cot\theta is undefined there.

Thus, there are 2 solutions.