Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The number of solutions of cos4θ – 2cos2θ + 3sin6θ + 1 = 0 in [0, 2π] is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

The correct answer is option (C): 3

Given, cos2θ=sinθcos2\theta=sin\theta

12sin2θ=sinθ\Rightarrow 1-2sin^2\theta=sin\theta

(2sinθ1)(sinθ+1)=0\Rightarrow (2sin \theta-1)(sin\theta+1)=0

sinθ=12,sinθ=1\Rightarrow sin\theta =\frac{1}{2},sin\theta=-1

\Rightarrow \theta=\left \\{ \frac{\pi}{6},\frac{5\pi}{6},\frac{3\pi}{2} \right \\} as θ(0,2π)\theta\in (0,2\pi)

The number of solutions is 3.